簡易檢索 / 詳目顯示

研究生: 劉竑劭
Liu, Hong-Shaw
論文名稱: 電化學加工於L型工具之形成與流場分析模擬
CFD Analysis for Formation and Flow Pattern of L-Shaped Tool with Electrochemical Machining
指導教授: 林三益
Lin, San-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 電化學加工數值模擬材料移除率電極間隙
外文關鍵詞: Electrochemical Machining(ECM), Numerical Simulation, Material Removal Rate, Inter Electrode Gap
相關次數: 點閱:240下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學加工(ECM)為非傳統加工的一種,利用電解液在陽極工件及陰極工具間的電化學反應溶解進行工件加工。而本研究將運用電化學加工(ECM)之相關電腦數值模擬,進行相關流場探討以及加工參數對於流場之影響,並提供結果作為往後研究之基礎。
    本研究運用套裝軟體ANSYS-CFX進行電化學加工之電極間隙間流場之數值模擬,探討各項參數對流場的影響。模型建立利用SolidWorks進行繪製,分別建立不同零件並做結合。網點之建立係利用ANSYS-ICEM生成格點,網格採用非結構網格。為確保研究精準性,分別利用三維空穴模型、三維彎管及鋁合金模型作為研究之驗證。最後對其模擬結果分析電解液流速、溫度分佈、電場分佈、電流密度以及移除率(MRR)的計算對於材料加工之影響。
    模擬結果方面,擷取電極間隙間流場的截面圖做為觀測平面,增加電壓及減少電解液流速,皆能增加材料之移除率,但流場高溫提升,需要注意電解流場之高溫處,避免加工不均勻。在工具形狀設計上,流場的順暢性以及緩衝流速的設計皆能使加工品質提升並增加材料移除率,電極間隙間流速快會降低溫度,其導電性變差而材料移除率也會隨之降低;流速慢會增加溫度,導電性變好進而增加工件材料之移除率

    Electrochemical Machining(ECM)is a rapid processing methos, it utilizes the electrochemical reaction of an electrolyte between anode workpiece and cathode tool to dissolve the workpiece.In this thsis, we use the software ANSYS-CFX to do simulate of the flow field between the electrode gaps and to discuss the influence of various parameters on the flow field. The models are drawn by SolidWorks and the unstructure grid system is generated by ANSYS ICEM CFD.
    To ensure the accuracy of the study, we served test cases, three-dimensional cavity Flow, three-dimensional U pipe flow and aluminum alloy multiphysics simulation are validated and the different types of L-Shapes tool for simulated to demonstrate the accuracy on the ECM flow field simulation. Finally, the how flow rate, temperature, electric potential, current density and material removal rate are investigated.

    中文摘要 I Extended Abstract II 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 內容大鋼 4 第二章 電化學加工基礎理論 6 2.1 電化學加工之原理 6 2.1.1 基本理論 6 2.1.2 電化學反應式 7 2.1.3 合金材料移除 8 2.2 電解液之導電參數 8 2.2.1 導電度 8 2.2.2 電流密度 10 2.2.3 電流效率 10 2.3 熱傳導理論 11 2.3.1 熱傳導 11 2.3.2 熱對流 13 2.3.3 熱輻射 16 第三章 數值方法 19 3.1 耦合概述 19 3.1.1 順序耦合法(Sequential Method)20 3.1.2 直接耦合法(Direct Method)20 3.2 網格生成 21 3.3 流場統御方程式 21 3.4 紊流模型(Turbulence Model)23 第四章 程式與物理模型驗證 24 4.1 三維空穴流(Cavity Flow)驗證 24 4.2 U型彎管流場驗證 25 4.3 二維鋁合金Multiphysics Simulation驗證 26 4.4 電化學加工之L型工具幾何及網格 27 4.5 電化學加工之L型工具之邊界條件 28 第五章 結果與討論 30 5.1 改變工具形狀 30 5.2 改變加工電壓 32 5.3 移除率之計算 35 第六章 結論與建議 37 參考文獻 39 表3.1 自動體網格類型與生成方法概述 42 表4.1 Multiphysics Simulation材料係數表 44 表4.2 L-Shaped材料係數表 45 表4-3 Multiphysics Simulation邊界條件設定 46 表4-4 L-Shaped邊界條件設定 47 圖2-3 熱傳導 48 圖2-4 牛頓冷卻 48 圖4-1三維空穴流(Cavity Flow) 49 圖4-2(a) Re=100 在水平中心線Y方向速度分佈 50 圖4-2(b) Re=100 在垂直中心線X方向速度分佈 50 圖4-3(a) Re=200 在水平中心線Y方向速度分佈 51 圖4-3(b) Re=200 在垂直中心線X方向速度分佈 51 圖4-4(a) Re=400 在水平中心線Y方向速度分佈 52 圖4-4(b) Re=400 在垂直中心線X方向速度分佈 52 圖4-5(a) Re=1000 在水平中心線Y方向速度分佈 53 圖4-5(b) Re=1000 在垂直中心線X方向速度分佈 53 圖4-6 U型彎管網格及邊界條件 54 圖4-7(a) M.E.H Nobari al.[7] U型彎管網格及邊界條件 54 圖4-7(b) M.E.H Nobari al. [7] U型彎管網格及邊界條件 55 圖4-8 U型彎管邊界層細部圖 55 圖4-9 U型彎管不同截面速度比對圖 57 圖4-10 鋁合金Multiphysics Simulation 模型 58 圖4-11 Matthias et al.[8] 非結構網格設置 58 圖4-12 鋁合金之流道網格配置圖 59 圖4-13 鋁合金之邊界條件設置圖 59 圖4-14 鋁合金之入口流速與流場最高速度比對表 60 圖4-15 鋁合金之入口流速與中心速度比對表 60 圖4-16 鋁合金之入口流速與流場最高溫比對表 61 圖4-17 Baburaj[5] 電化學加工系統示意圖 62 圖4-18 Baburaj[5] 電化學加工之電極設置圖 62 圖4-19 Baburaj[5] L型電極工具-1 63 圖4-20 Baburaj[5] L型電極工具-2 63 圖4-21 L型工具一 固體邊界設置圖 64 圖4-22 L型工具一 流體邊界設置圖 64 圖4-23 L型工具二 固體邊界設置圖 65 圖4-24 L型工具二 流體邊界設置圖 65 圖4-25(a) L型工具一 流場速度分佈圖 66 圖4-25(b) L型工具一 流場速度剖面圖 66 圖4-26(a) L型工具一 流場溫度分佈圖 67 圖4-26(b) L型工具一 流場溫度剖面圖 67 圖4-27(a) L型工具一 流場壓力分佈圖 68 圖4-27(b) L型工具一 流場壓力剖面圖 68 圖4-28(a) L型工具二 流場速度分佈圖 69 圖4-28(b) L型工具二 流場速度剖面圖 69 圖4-29(a) L型工具二 流場溫度分佈圖 70 圖4-29(b) L型工具二 流場溫度剖面圖 70 圖4-30(a) L型工具二 流場壓力分佈圖 71 圖4-30(b) L型工具二 流場壓力剖面圖 71 圖5-1 L型工具 流場最高速度比對圖 72 圖5-2 L型工具 流場溫度比對圖 72 圖5-3 L型工具 平均電流密度比對圖 73 圖5-4 L型工具一 改變電壓與流場最高速度比對圖 74 圖5-5 L型工具一 改變電壓與流場溫度比對圖 74 圖5-6 L型工具一 改變電壓與平均電流密度比對圖 75 圖5-7(a) L型工具一 電壓10V,入口流速36(m/s)之溫度流場圖 76 圖5-7(b) L型工具一 電壓10V,入口流速48(m/s)之溫度流場圖 76 圖5-8(a) L型工具一 電壓7.5V,入口流速36(m/s)之溫度流場圖 77 圖5-8(b) L型工具一 電壓7.5V,入口流速48(m/s)之溫度流場圖 77 圖5-9(a) L型工具一 電壓5V,入口流速36(m/s)之溫度流場圖 78 圖5-9(b) L型工具一 電壓5V,入口流速48(m/s)之溫度流場圖 78 圖5-10 L型工具二 改變電壓與流場最高速度比對圖 79 圖5-11 L型工具二 改變電壓與流場溫度比對圖 79 圖5-12 L型工具二 改變電壓與平均電流密度比對圖 80 圖5-13(a) L型工具二 電壓10V,入口流速36(m/s)之溫度流場圖 81 圖5-13(b) L型工具二 電壓10V,入口流速48(m/s)之溫度流場圖 81 圖5-14(a) L型工具二 電壓7.5V,入口流速36(m/s)之溫度流場圖 82 圖5-14(b) L型工具二 電壓7.5V,入口流速48(m/s)之溫度流場圖 82 圖5-15(a) L型工具二 電壓5V,入口流速36(m/s)之溫度流場圖 83 圖5-15(b) L型工具二 電壓5V,入口流速48(m/s)之溫度流場圖 83 圖5-16 L型工具改變電壓與材料移除率比對圖 84 圖5-17 L型工具一改變電壓與材料移除率比對圖 84 圖5-18 L型工具二 改變電壓與材料移除率比對圖 85 圖5-19 L型工具一 流道中心與出口之材料移除率比對圖 85 圖5-20 L型工具二 流道中心與出口之材料移除率比對圖 86

    [1]E. I. Filatov, "The numerical simulation of the unsteady ECM process," Journal of Materials Processing Technology, Vol. 109, No. 3, pp. 327-332, 2001.
    [2]C.Y. Wang, "脈衝電化學加工之微電極製作參數分析," National Central University, 2008.
    [3]V. Sivabharathi, P. Marimuthu, S. Ayyappan, "Numerical and experimental study on enhancement of electrochemical machining performance by baffled tool," Int J Adv Engg Tech/Vol. VII/Issue II/April-June, pp. 1118-1125, 2016.
    [4]許家瑞, "電化學加工之參數探討與流場模擬," 成功大學航空太空工程學系碩士論文, pp. 1-106, 2017.
    [5]M. Baburaj, "CFD analysis of flow pattern in electrochemical machining for L-shaped tool," M. Tech project report, 2012.
    [6]C. Shu, L. Wang, and Y. Chew, "Numerical computation of three‐dimensional incompressible Navier–Stokes equations in primitive variable form by DQ method," International Journal for Numerical Methods in Fluids, Vol. 43, No. 4, pp. 345-368, 2003.
    [7]M. Nobari and E. Amani, "A numerical investigation of developing flow and heat transfer in a curved pipe," International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 19, No. 7, pp. 847-873, 2009.
    [8]M. Hackert-Oschätzchen, N. Lehnert, M. Kowalick, G. Meichsner, and A. Schubert, "Analysis of the Electrochemical Removal of Aluminium Matrix Composites Using Multiphysics Simulation," 2014 COMSOL Conference in Cambridge, 2014.
    [9]高飛、李昕,"ANSYS CFX 14.0超級學習手冊", 人民郵電出版社,2013.
    [10]S. Sain, "CFD analysis of flow pattern in electrochemical machining," Master thsis, National Institute of Technology Rourkela, 2011.
    [11]S. Mukherjee, S. Kumar, P. Srivastava, and A. Kumar, "Effect of valency on material removal rate in electrochemical machining of aluminium," Journal of materials processing technology, Vol. 202, No. 1-3, pp. 398-401, 2008.
    [12]Y. Chen, M. Fang, and L. Jiang, "Multiphysics simulation of the material removal process in pulse electrochemical machining (PECM)," The International Journal of Advanced Manufacturing Technology, Vol. 91, No. 5-8, pp. 2455-2464, 2017.
    [13]范植坚, 赵刚刚, and 张丽娟, "多工位同时加工的整体阴极及电解加工装置设计," 兵工学报, Vol. 32, No. 4, pp. 482-486, 2011.
    [14]孙春华, 朱荻, 李志永, and 王蕾, "考虑流场特性的发动机叶片电解加工阴极设计及数值仿真," 东南大学学报 (自然科学版), Vol. 5, 2004.
    [15]R. Wu, D.-W. Zhang, and J. Sun, "3-D Flow Field of Cathode Design for NC Precision Electrochemical Machining Integer Impeller Based on CFD," Research journal of applied sciences, engineering and technology, Vol. 3, No. 9, pp. 1007-1013, 2011.
    [16]J C.-Y. Wang, "脈衝電化學加工之微電極製作參數分析," National Central University, 2008.
    [17]U. Rath, "Two phase flow analysis in electrochemical machining for l-shaped tool: A CFD APPROACH," Master thsis, National Institute of Technology Rourkela,2013.
    [18]Z. Feng, J. M. Orona-Hinojos, P. P. Villanueva, P. Lomeli, and W. N. Hung, "Flushing Enhancement With Vibration and Pulsed Current in Electrochemical Machining,"International Journal of Engineering Materials and Manufacture, Vol.2(4), pp. 67-85,2017.
    [19]紀兵兵, 張曉霞, "ANSYS ICEM CFD基礎教程與實例詳解, " 機械工業出版社,2015.
    [20]謝龍漢, 趙新宇, "ANSYS CFX流體分析及仿真(第二版)," 電子工業出版社, 2013.
    [21]J. Lu, G. Riedl, B. Kiniger, and E. A. Werner, "Three-dimensional tool design for steady-state electrochemical machining by continuous adjoint-based shape optimization," Chemical Engineering Science, Vol. 106, pp. 198-210, 2014.
    [22]V. M. Volgin and V. V. Lyubimov, "Mathematical modelling of three-dimensional electrochemical forming of complicated surfaces," Journal of Materials Processing Technology, Vol. 109, No. 3, pp. 314-319, 2001.
    [23]李志永, "基于间隙实际电场分布的叶片电解加工阴极设计," 华南理工大学学报 (自然科学版), Vol. 35, No. 3, 2007.
    [24]V. Sathiyamoorthy, K. Arumugam, R. Anbazhagan, N. Nandagopal, and S. Aravindh, "Analysis of electrochemical machining tool by using ANSYS CFX 15.0." Journal of Chemical and Pharmaceutical Scuences, Vol.9, Issue.4 ,2016.
    [25]葉佳錡, 李群威, 邱源成, 李榮宗, "電解加工條件對微鎢針幾何形狀及尺寸之影響, " 中國機械工程學會第二十四屆全國學術研討會論文集,論文編號D08-0044,1999.
    [26]Jian-min Wu, Jin-dong Wang, "Simulation of Parameters of Flow Field on Groove in Electrochemical Machining," The International Journal of Engineering and Science, Vol. 6, Issue. 7, pp. 26-31, 2017.
    [27]Krishna Mohan Singh, R. N. Mall, "Analysis Of Optimum Corner Radius Of Electrolyte Flow Path In Ecm Using CFD," International Journal of Engineering Research & Technology, Vol. 2, pp. 617-635, 2013.

    下載圖示 校內:2023-06-17公開
    校外:2023-06-17公開
    QR CODE