| 研究生: |
石政哲 Shih, Cheng-Che |
|---|---|
| 論文名稱: |
多目標改變船體線型最佳化之研究 Multi-objective optimization for the performance improvement of ship hull forms |
| 指導教授: |
楊世安
Yang, Shih-An |
| 共同指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 貨櫃船 、裸船阻力試驗 、耐海性試驗 、粒子群演算法 、最佳化 、C♯ 、Rhino3D 、SHIPFLOW |
| 外文關鍵詞: | Container, Shoulder-bulbous bulb, Ship resistance, Seakeeping, Particle Swarm Optimization. |
| 相關次數: | 點閱:127 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分成兩部分,第一個為數值模擬部分是利用多目標粒子群演算法探討船舶線型最佳化設計之問題,結合船用計算流體力學及船體運動學評估設計船型所需考量之適應值,如:總阻力係數、縱搖、起伏等船形表現指標,並利用Rhino3D中變形控制器隨機產生船體肩部外型,轉換檔案提供耐海性與商用計算流體力學軟體SHIPFLOW進行計算,比較單目標與多目標演算法對於肩部線型改變之影響,以及在多目標求解情況下,將原本只變化球艏的船型與擴大範圍至肩部線型的船型做比較,預期可以增加改善興波阻力與耐海性的結果。
第二個部分為試驗部分為對於現有原型船做單目標肩部線型最佳化,將最佳化後的船模在成大拖航水槽進行裸船阻力試驗與耐海試驗,分別得到船模裸船總阻力值和船體運動量,再與原型船進行比較。
本研究係以物件導向軟體C ♯ (發音:C sharp)為主程式架構撰寫多目標粒子群演算法,配合按鍵精靈製作腳本執行變動Rhino3D中控制點產生新船型,修正原始船型以計算出多目標最佳化的柏拉圖解集。
本研究經多方探討後,結果建議在主要尺寸皆不變的情況下,藉由變動球艏或是擴大範圍至肩部線型要以多目標方式改善耐海性能並不適用,應降低興波阻力為主,減少油耗達到節能減碳之目的。
The objective of the present study is to apply the optimization technique based on the particle swarm optimization algorithm to improve the ship hull forms with respect to the wave resistance and the seakeeping characteristics. There are two main parts in the study: (I) Numerical simulations and (II) The Experimental test for verification.
The first part (I), is to apply the software including the computation fluid dynamics and ship motion to estimate the hull design factors, i.e. total resistance, pitch and heave. The single- and multi-objective particle swarm optimization algorithm are applied to produce the optimized shoulder-bulbous bow shape instead of the optimized bulbous bow in order to obtain more improvement on wave-making resistance and seakeeping characteristics than before. The second part (II), is to handle the model test in the NCKU SNAME towing tank to verify the reliability and the accuracy of the new optimized shoulder-bulbous bow shape for a container ship, including the bare hull resistance tests in calm water and the seakeeping tests in head waves. The related verifications based on the original ship model are firstly done by comparing the experimental results and CFD calculations.
After a series of analysis, we find that the multi-objective optimization approach including heave, pitch and wave-making resistance is proved to be inefficient in this study. Hence we suggest to apply single-objective optimization approach based on the wave-making resistance to make the ship hull optimization design.
Barsoum, R. G. S. (2000). Interdisciplinary computational mechanics—some computational problems in naval ship design. International Journal for Numerical Methods in Engineering, 47(1‐3), 729-734.
Campana, E.F., Peri, D., Tahara, Y., & Stern, F. (2006). Shape optimization in ship hydrodynamics using computational fluid dynamics. Computational Methods Application Engineering, Vol.196.
Coello, C.A.C., Pulido, G.T., & Lechuga, M.S. (2004). Handling Multiple Objectives With Particle Swarm Optimization, IEEE Transactions on Evolutionary Computation, Vol.8, No.3, June.
Day, A.H., & Doctors, L.J. (2001). Rapid estimation of near-and far-field wave wake from ships and application to hull-form design and optimization. Journal of Ship Research, Vol. 45, No. 1, p. 73-84.
Eberhart, R.C., & Shi, Y. (2000). Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 1, pp.84-88.
Fang, M.C., & Chen, G. R. (2000). The three-dimensional solution for the nonlinear drifting force and moment of a ship in waves. Journal of the Society of Naval Architects and Marine Engineers, 11.
Fourie, P. C., & Groenwold A. A. (2002). The Particle Swarm Optimization Algorithm in Size and Shape Optimization, Structural and Mutidisciplinary Opitimization, Vol. 23, No. 4, pp.259-267.
Gören, Ö., Insel, M., & Atlar, M. (2001). An optimization study for the bow form of high-speed displacement catamarans. Marine Technology, 38(2), 116-121.
Huang, C. H., Chiang, C. C., & Chou, S. K. (1998). An inverse geometry design problem in optimizing hull surfaces. Journal of Ship Research, 42(2), 79-85.
Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. pp. 1942–1948.
Kim, C.H., Chou, F. S., & Tien, D. (1980). Motions and Hydrodynamic Load of a Ship Advancing in Oblique Waves, Transactions of the Society of Navel Architects and Marine Engineers, Vol.88, pp. 225-256
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science, New Series, Vol. 220, No. 4598., pp. 671-680
Lowe, T. W., Bloor, M. I. G., & Wilson, M. J. (1994). The automatic functional design of hull surface geometry. Journal of ship research, 38(4), 319-328.
Peri, D. & Campana, E.F. (2003). Multidisciplinary Design Optimization of a Naval Surface Combatant. Journal of Ship Research, Vol. 47, No.1, March, pp.1-12.
Peri, D., Rossetti, M., & Campana, E. F. (2001). Design optimization of ship hulls via CFD techniques. Journal of Ship Research, 45(2), 140-149.
Pinto, A., Peri, D., Campana, E.F. (2007). Multiobjective Optimization of a Containership using Deterministic Particle Swarm Optimization. Journal of Ship Research, Vol.51.
Raquel, C.R., Naval, P.C. (2005). An effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization,” Proceedings of Genetic and and Evolutionary Conference (GECCO 2005),257–64, ACM
Shi, Y., & Eberhart, R. C. (1998, March). Parameter selection in particle swarm optimization. In Evolutionary programming VII (pp. 591-600). Springer Berlin Heidelberg.
Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on (pp. 69-73). IEEE.
Shipflow tutorial – Advanced, Revision 2, April 2013.
Valorani, M., Peri, D., & Campana, E. F. (2000). Efficient strategies to design optimal ship hulls. American Institute of Aeronautics and Astronautics, 5-8.
Thu Bui, L. (Ed.). (2008). Multi-Objective Optimization in Computational Intelligence: Theory and Practice: Theory and Practice. IGI Global.
Wyatt, D. C., & Chang, P. A. (1994). Development and assessment of a total resistance optimized bow for the AE 36. Marine Technology, V ol.31 No. 2, April, p 149
吳宜親,(2007)。波浪中三體船非線性力之三維解,國立成功大學造船暨船舶機電工程研究所,碩士論文
周群璋,(2015)。船舶於不同航行姿態時對耐海性能之影響,國立成功大學造船暨船舶機電工程研究所,碩士論文
胡登凱,(2007)。波浪中三體船之穩態及非穩態之流體動力解析,國立成功大學造船暨船舶機電工程研究所,碩士論文
廖培元,(1998)。波浪中船體運動三維解,國立成功大學造船暨船舶機電工程研究所,碩士論文
劉皓翔,(2012)。應用多目標粒子群演算法於船舶球形艏最佳化設計,成功大學造船暨船舶機電工程研究所,碩士論文
劉一霖,(2015)。開發圖形使用者介面與船舶球型艏優化之研究,國立成功大學造船暨船舶機電工程研究所,碩士論文
劉祖源、馮佰威、詹成勝,(2010)。 船體型線多學科設計優化,國防工業出版社
謝富百,(2013)。不同吃水情形下船形最佳化,國立成功大學造船暨船舶機電工程研究所,碩士論文