簡易檢索 / 詳目顯示

研究生: 林源富
Lin, Yuan-Fu
論文名稱: 運用高階有限元素解破裂點尖端應力強度因子
The use of higher order element to solve the crack tip stress intensity factor
指導教授: 何旭彬
Ho, Shi-Pin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 67
中文關鍵詞: 靜態縮減矩陣高階元素有限元素法應力強度因子位移外插法超收斂率
外文關鍵詞: superconvergent rate, finite element method, static condensation, displacement extrapolation method, higher order elements, stress intensity factor
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本文主要是探討有限元素法中的高階元素對求解裂縫端之應力強度因子(SIF)的效能,並與奇異元素作個比較。在這之前也對超收斂點的位置和靜態縮減的方法作一些的探討。
    對能量誤差而言, 階Lagrange型態的元素在n*n個高斯積分點的位置上有(n+1)的超收斂率;且其收斂率和精確度方面亦較其它兩種元素來的好。若將高階Lagrange型態之元素在求解部分搭配靜態縮減的方法,將可大量的縮短求解時間,尤其是整體自由度越來越大時。
    當使用位移外插法來求SIF時,二次外插法似乎較線性外插法來的合理,且有時其精確度亦較高。針對奇異性為1/sqrt(r)的問題時,奇異元素較高階元素有著更好的近似結果,特別是在裂縫端配置三角形奇異元素時
    ,然而高階元素亦有不錯的結果(誤差小於1%)。
    針對相同總自由度的問題,若高階元素能搭配靜態縮減的方法,其不僅較低階元素求解時間快且精度亦較高。

    關鍵字:有限元素法、超收斂率、高階元素、位移外插法、應力強度因
    子、靜態縮減矩陣

    Abstract

    The purpose of this research is to study the effect of higher order elements
    in solving the crack tip stress intensity factor (SIF), and to compare the results
    with those obtained by using the singular elements. We also study the positions
    of the superconvergent points as well as the method of static condensation
    beforehand.

    In energy norm,the n-th order Lagrange elements have the superconvergent
    rate with the order of n+1,and their locations are on n by n Gauss integration
    points. The accuracy and convergent rate of the Lagrange elements are better
    than the other two kinds of elements which are Serendipity and Enriched
    Serendipity. The method which using the static condensation in solving process
    will save a large amount of time with lager and lager degrees of freedom
    especially.

    When using the method of displacement extrapolation to solve SIF, we
    find that the second order interpolation method seems to be more reasonable
    than the first order one.Singular elements have the better approximate results
    than higher order elements with the problems of the singularity equaling to 1/sqrt(r), especially in the case of using triangular singular elements. But the
    higher order elements also have satisfying results (the error less than 1% ).

    For the problem of the same total degrees of freedom,the higher order
    elements spend less time and have better accuracy than lower order elements,
    if these higher order ones can collocate the method of static condensation in
    solving process.

    keywords : finite element method,superconvergent rate, higher order
    elements, displacement extrapolation method,stress intensity
    factor, static condensation

    目 錄 中文摘要……………………………………………………Ⅰ 英文摘要……………………………………………………Ⅱ 誌謝…………………………………………………………Ⅲ 目錄…………………………………………………………Ⅳ 表目錄………………………………………………………Ⅶ 圖目錄………………………………………………………Ⅸ 符號說明……………………………………………………XⅢ 第一章 緒論…………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………3 1.3 研究動機與目的……………………………………………4 1.4 論文架構……………………………………………………6 第二章 相關理論……………………………………………7 2.1 有限元素法…………………………………………………7 2.1.1 平面應力和平面應變………………………………....8 2.1.2 元素的型態…………………………………………....12 2.2 靜態縮減矩陣………………………………………………15 2.3誤差分析與收斂的定義…………………………………….16 2.4 破壞力學……………………………………………………18 2.4.1 奇異元素……………………………………………....20 2.4.2 位移外插法…………………………………………....21 第三章 程式驗證與問題描述………………………………23 3.1 程式的驗證…………………………………………………23 3.1.1 『ANSYS』的驗證………………………………….....23 3.1.2 含正確解範例的驗證………………………………....25 3.2 收斂性與靜態縮減的探討…………………………………29 3.2.1 超收斂點的位置……………………………………....29 3.2.2 求解時間的比較……………………………………....31 3.3 問題的定義與分析的目標…………………………………33 第四章 數值結果與討論……………………………………36 4.1 奇異元素對誤差的影響……………………………………36 4.1.1 程式之結果…………………………………………....36 4.1.2 與『ANSYS』的比較……………………………….....41 4.1.3 三角形元素的影響…………………………………....42 4.2 高階元素對誤差的影響……………………………………44 4.2.1 二階元素……………………………………………....45 4.2.2 三階元素……………………………………………....46 4.2.3 四階元素……………………………………………....46 4.2.4 五階元素……………………………………………....47 4.2.5 六階元素……………………………………………....48 4.2.6 七階元素……………………………………………....48 4.2.7 八階元素……………………………………………....49 4.2.8 三角形元素的影響…………………………………....50 4.3 高階元素的優勢……………………………………………60 第五章 結論與建議…………………………………………62 參考文獻…………………………………………………………64 自述………………………………………………………………67

    參考文獻
    [1] W. E. Anderson, “An engineer views brittle fracture history”, Boeing rept., 1969.
    [2] D. Broek, “Elementary Engineering Fracture Mechanics”, 4th Edition, Martinus Nijhoff Publishers, 1986.
    [3] W. X. Zhu and D. J. Smith, “On the use of displacement extrapolation
    to obtain crack tip singular stresses and stress intensity factors”,
    Engng. Fractre Mech. 51, 391-400, 1995.
    [4] G. V. Guinea, J. Planas and M. Elices, “ evaluation by the
    displacement extrapolation technique”, Engng. Fracture Mech. 66,
    243-255, 2000.
    [5] L. S. Chen and J. H. Kuang, “A modified linear extrapolation formul
    for determination of stress intensity factors”, Int. J. Fract. 54, R3-R8
    , 1992.
    [6] R. D. Henshell and K. G. Shaw, “Crack tip finite element are unnecessary”
    , Int. J. Numer. Methods Engng. 9, 495-507, 1975.
    [7] J. R. Rice, “A path independent integral and the approximate
    analysis of strain concentration by notches and cracks”, J. Appl.
    Mech. 35 , 379-386, 1968.
    [8] L. Banks-Sills and D. Sherman, “Comparison of method for
    calculating stress intensity factors with quarter-point elements”,
    Int. J. Fract. Mech. 32, 127-140, 1986.
    [9] D. M. Parks, “A stiffness derivative finite element technique for
    determination of crack tip stress intensity factors”, Int. J. Fract. 10,
    487-502, 1974.
    [10] B. Moran and CF. Shih, “A general treatment of crack tip contour
    integrals”, Int. J. Fract. 35, 295-310, 1987.
    [11] J. N. Reddy, “An Introduction to the Finite Element Method”, 2nd
    Edition, McGraw-Hill, Singapore, 1993.
    [12] D. R. J. Owen and A. J. Fawkes, “Engineering Fracture Mechanics :
    Numerical Methods and Applications”, Pineridge Press Ltd., Swansea
    , U.K., 1983.
    [13] R. S. Barsoum, “On the use of isoparametric finite elements in linear
    fracture mechanics”, Int. J. Numer. Methods Engng. 10, 25-37, 1976.
    [14] L. Banks-Sills and O. Einav, “On singular, nine-noded, distorted,
    isoparametric elements in linear elastic fracture mechanics”,
    Comput. Struct. 25, 445-449, 1987.
    [15] F. C. M. Menandro, E. T. Moyer, JR and H. Liebowitz, “A new
    optimal crack tip mesh”, Engng. Fracture Mech. 50, 703-711,
    1995.
    [16] F. C. M. Menandro, E. T. Moyer, JR and H. Liebowitz, “A
    methodology for crack tip mesh design”, Engng. Fracture Mech. 50,
    713-726, 1995.
    [17] K. S. Woo and C. G. Lee, “P-version finite element approximations
    of stress intensity factors for cracked plates including shear
    deformation”, Engng. Fracture Mech. 52, 493-502, 1995.
    [18] K. S. Woo and P. K. Basu, “Analysis of singular cylindrical shells
    by p-version of FEM”, Int. J. Solids Struct. 25, 151-165, 1989.
    [19] D. S. Burnett, “Finite Element Analysis From Concepts to
    Applications”, Addison-Wesley, Canada, 1987.
    [20] D. L. Logan, “A First Course in the Finite Element Method”, PWSKENT
    , Boston, 1992.
    [21] A. P. Boresi and K. P. Chong, “Elasticity In Engineering
    Mechanics”, 2nd Edition, John Wiley & Sons, USA, 2000.
    [22] H. T. Rathod and S. Kilari, “General complete lagrange family for
    the cube in the finite element interpolations”, Comput. Methods
    Appl. Mech. Engng. 181, 295-344, 2000.
    [23]蔡文傑,”二維有限元素法之收斂性探討”,國立成功大學機械工程
    研究所碩士論文,2001。
    [24] H. Jean-Francois and B. Klaus-Jurgen, “On higher-order-accuracy
    points in isoparametric finite element analysis and an application
    to error assessment”, Comput. Struct. 79, 1275-1285, 2001.
    [25]A. H. Stroud and D. Secrest, “Gaussian Quadrature Formulas”, Prentice
    Hall, Englewood Cliffs, N. J., 1966.
    [26] M. E. Laursen and M. Gellert, “Some criteria for numerically
    integrated matrices and quadrature formulas for triangles”, Int. J.
    Numer. Methods Engng. 12, 67-76, 1978.
    [27] P. Hillion, “Numerical integration on a triangle”, Int. J. Numer.
    Methods Engng. 11, 797-915, 1977.
    [28] C. T. Reddy and D. J. Shippy, “Short communications alternative
    integration formulae for triangular finite elements”, Int. J. Numer.
    Methods Engng. 17, 133-153, 1981.
    [29] Y. Murakami, “Stress Intensity Factors Handbook”, Pergamon
    Press, 2000.
    [30] L. N. Trefethen and D. Bau, “Numerical Linear Algebra”, SIAM,
    USA, 1997.
    [31]陳明凱,”平行有限元素法之負載平衡探討”,國立成功大學機械工
    程研究所碩士論文,2001。

    下載圖示 校內:立即公開
    校外:2002-07-04公開
    QR CODE