| 研究生: |
陳昱倫 Chen, Yu-Lun |
|---|---|
| 論文名稱: |
分泌型細胞自噬體在登革病毒蛋白及高遷移率族蛋白B1的表現中所扮演的角色 The role of secretory autophagy in the expression of dengue virus proteins and HMGB1 |
| 指導教授: |
劉校生
Liu, Hsiao-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 自噬現象 、分泌型自噬體 、高遷移率族蛋白B1 、登革病毒 |
| 外文關鍵詞: | autophagy, secretory autophagy, HMGB1, Dengue virus |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒(Dengue virus; DENV)每年導致超過3.9億人感染。登革病毒感染會導致輕度登革熱(DF)、嚴重登革熱出血熱(DHF)以及登革熱休克綜合徵(DSS),甚至死亡。登革病毒是單鍊正股核醣核酸包膜病毒,其基因是由三個結構蛋白;核蛋白(C),前膜蛋白(prM / M),包膜蛋白(E)和七個非結構蛋白(NS1至NS5)組成,這些病毒蛋白各自扮演了從病毒RNA複製到蛋白質合成等不同的角色。先前的研究指出登革病毒感染會誘導自噬現象(autophagy)並幫助病毒複製。他人報導登革病毒感染會觸發自噬相關囊泡的釋放並藉此逃避免疫系統監測。自噬現象也負責病原體和細胞內許多蛋白的運送,包括高遷移率族蛋白B1(HMGB1),並可分為選擇性和非選擇性兩種降解機制。本研究闡明了自噬體(autophagosome),HMGB1和登革病毒蛋白之間的關係,包括登革病毒蛋白是否可以選擇性的被自噬體包裹及分泌型自噬現象是否參與病毒蛋白質的釋放。我們首先確認登革病毒的感染可以誘導自噬現象在肺癌細胞(A549)發生。接著從登革病毒感染的肝癌細胞和肺癌細胞中純化出自噬體,利用電子顯微鏡觀察確認受免疫金標記的C,NS1和NS3蛋白存在其中。我們還證明了登革病毒的C,E,NS1,NS3,NS4B和HMGB1蛋白可以選擇性的被包裹到自噬體中。此外登革病毒的C,E,NS1和NS3蛋白的表現會隨著感染時間逐漸增加,顯示這些蛋白質並沒有被自噬體降解。進一步使用溶酶體融合的抑制劑(CQ)抑制自噬體降解發生,結果顯示在抑制劑作用的細胞中登革蛋白C,E和NS1的表現相對於LC3蛋白要來的低,有可能在CQ處理下分泌型自噬反應被誘發並進一步協助這三種蛋白之釋放。HMGB1在CQ作用下釋放量的增加支持了我們的推測。此外我們也證實純化的自噬體中不含有病毒顆粒但仍具有感染性。總而言之,本研究證實在登革病毒的感染下,若自噬降解反應被抑制時可以誘導分泌型自噬的發生並將登革蛋白C、E和NS1以及HMGB1釋放到細胞外。
Dengue virus (DENV) causes over 390 million people infection every year. Dengue disease ranges from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) and death. DENV is an enveloped, single-stranded, positive-sense RNA virus. DENV genome consists of three structural proteins capsid protein (C), premembrane/ membrane protein (prM/M), envelope protein (E) and seven nonstructural proteins (NS1 to NS5). These proteins play diverse roles from viral RNA replication to protein synthesis. We previously reported that DENV infection induces autophagy to enhance virus replication. Others further reported that DENV infection triggered autophagy related vesicle releasing to evade immune system surveillance. Autophagic machinery is involved in selective and non-selective cargoes degradation process and participates in extracellular delivery of a number of pathogen particles and cytosolic proteins, such as high mobility group box 1 (HMGB1), which was significantly increased in DENV-infected patients. This study clarified the relationship among autophagosome, HMGB1 and DENV proteins, including which DENV-protein can be selectively recruited to the autophagosome and whether secretory autophagy is involved in the release of these recruited proteins. Initially, we showed that autophagy is induced by DENV2 infection of lung cancer A549 cells. We then purified the autophagosome from DENV2-infected Huh7 cell and A549 cells. We further reveal that DENV-C, E, NS1, NS3, NS4B and HMGB1 proteins are existed in the purified autophagosomes by Western blotting. We confirmed that C, NS1 and NS3 proteins are indeed in the autophagosome by immunogold labeling transmission electron microscopy. We also clarified that DENV-C, E, NS1, NS3, NS4B and HMGB1 can be selectively recruited to the autophagosome. Furthermore, the levels of C, E, NS1 and NS3 proteins increased alone with infection time, indicating that these proteins were not degraded. We further used chloroquine (CQ) to block lysosome fusion at 48 h.p.i. The levels of DENV-C, E and NS1 proteins decreased compared to the LC3-II protein levels in DENV2 infected A549 cells, indicating that an unconventional secretory autophagy was triggered, which leads to the exocytosis of these three proteins under CQ treatment conditions. The increase release of HMGB1 after CQ treatment, support our speculation that secretory autophagy was promoted when degradative autophagic process was inhibition. In conclusion, this study provide the evidence that an unconventional secretory autophagy can be induced during under DENV infection when autophagy degradation was suppression.
Allonso, D., Vazquez, S., Guzman, M. G., & Mohana-Borges, R. (2013). High mobility group box 1 protein as an auxiliary biomarker for dengue diagnosis. Am J Trop Med Hyg, 88(3), 506-509. doi: 10.4269/ajtmh.2012.12-0619
Axe, E. L., Walker, S. A., Manifava, M., Chandra, P., Roderick, H. L., Habermann, A., . . . Ktistakis, N. T. (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4), 685-701. doi: 10.1083/jcb.200803137
Bell, C. W., Jiang, W., Reich, C. F., 3rd, & Pisetsky, D. S. (2006). The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol., 291(6), C1318-1325. doi: 10.1152/ajpcell.00616.2005
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., . . . Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. doi: 10.1038/nature12060
Bianchi, M. E., & Agresti, A. (2005). HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev., 15(5), 496-506. doi: 10.1016/j.gde.2005.08.007
Bird, S. W., & Kirkegaard, K. (2015). Escape of non-enveloped virus from intact cells. Virology, 479-480, 444-449. doi: 10.1016/j.virol.2015.03.044
Bird, S. W., Maynard, N. D., Covert, M. W., & Kirkegaard, K. (2014). Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci U S A, 111(36), 13081-13086. doi: 10.1073/pnas.1401437111
Byk, L. A., & Gamarnik, A. V. (2016). Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol, 3(1), 263-281. doi: 10.1146/annurev-virology-110615-042334
Carvalho, F. A., Carneiro, F. A., Martins, I. C., Assuncao-Miranda, I., Faustino, A. F., Pereira, R. M., . . . Santos, N. C. (2012). Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol, 86(4), 2096-2108. doi: 10.1128/JVI.06796-11
Chen, L. C., Yeh, T. M., Wu, H. N., Lin, Y. Y., & Shyu, H. W. (2008). Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. J Infect, 56(2), 143-150. doi: 10.1016/j.jinf.2007.10.008
Chua, J. J., Ng, M. M., & Chow, V. T. (2004). The non-structural 3 (NS3) protein of dengue virus type 2 interacts with human nuclear receptor binding protein and is associated with alterations in membrane structure. Virus Res., 102(2), 151-163. doi: 10.1016/j.virusres.2004.01.025
Deretic, V. (2006). Autophagy as an immune defense mechanism. Curr. Opin. Immunol., 18(4), 375-382. doi: 10.1016/j.coi.2006.05.019
Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D., & Deretic, V. (2011). Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J., 30(23), 4701-4711. doi: 10.1038/emboj.2011.398
Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol., 221(1), 3-12. doi: 10.1002/path.2697
Harrison, R. E., Bucci, C., Vieira, O. V., Schroer, T. A., & Grinstein, S. (2003). Phagosomes Fuse with Late Endosomes and/or Lysosomes by Extension of Membrane Protrusions along Microtubules: Role of Rab7 and RILP. Mol. Cell. Biol., 23(18), 6494-6506. doi: 10.1128/mcb.23.18.6494-6506.2003
Heaton, N. S., & Randall, G. (2010). Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe, 8(5), 422-432. doi: 10.1016/j.chom.2010.10.006
Hsieh, S. C., Wu, Y. C., Zou, G., Nerurkar, V. R., Shi, P. Y., & Wang, W. K. (2014). Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem, 289(48), 33149-33160. doi: 10.1074/jbc.M114.610428
Hyttinen, J. M., Niittykoski, M., Salminen, A., & Kaarniranta, K. (2013). Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim. Biophys. Acta, 1833(3), 503-510. doi: 10.1016/j.bbamcr.2012.11.018
Kamau, E., Takhampunya, R., Li, T., Kelly, E., Peachman, K. K., Lynch, J. A., . . . Palmer, D. R. (2009). Dengue virus infection promotes translocation of high mobility group box 1 protein from the nucleus to the cytosol in dendritic cells, upregulates cytokine production and modulates virus replication. J Gen Virol, 90(Pt 8), 1827-1835. doi: 10.1099/vir.0.009027-0
Krishnan, M. N., Sukumaran, B., Pal, U., Agaisse, H., Murray, J. L., Hodge, T. W., & Fikrig, E. (2007). Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol, 81(9), 4881-4885. doi: 10.1128/JVI.02210-06
Kuballa, P., Nolte, W. M., Castoreno, A. B., & Xavier, R. J. (2012). Autophagy and the immune system. Annu. Rev. Immunol., 30, 611-646. doi: 10.1146/annurev-immunol-020711-074948
Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., Jiang-Shieh, Y. F., . . . Liu, H. S. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2), 240-248. doi: 10.1016/j.virol.2008.02.016
Lee, Y. R., Su, C. Y., Chow, N. H., Lai, W. W., Lei, H. Y., Chang, C. L., . . . Liu, H. S. (2007). Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res., 126(1-2), 216-225. doi: 10.1016/j.virusres.2007.03.003
Li, F., & Vierstra, R. D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci., 17(9), 526-537. doi: 10.1016/j.tplants.2012.05.006
Lim, S. P., Koh, J. H., Seh, C. C., Liew, C. W., Davidson, A. D., Chua, L. S., . . . Lescar, J. (2013). A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem, 288(43), 31105-31114. doi: 10.1074/jbc.M113.508606
Luo, D., Xu, T., Hunke, C., Gruber, G., Vasudevan, S. G., & Lescar, J. (2008). Crystal structure of the NS3 protease-helicase from dengue virus. J Virol, 82(1), 173-183. doi: 10.1128/JVI.01788-07
McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D., & Zakeri, Z. (2011). Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem, 286(25), 22147-22159. doi: 10.1074/jbc.M110.192500
Menzies, F. M., Fleming, A., & Rubinsztein, D. C. (2015). Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci., 16(6), 345-357. doi: 10.1038/nrn3961
Muller, D. A., & Young, P. R. (2013). The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res., 98(2), 192-208. doi: 10.1016/j.antiviral.2013.03.008
Munoz-Jordan, J. L., Laurent-Rolle, M., Ashour, J., Martinez-Sobrido, L., Ashok, M., Lipkin, W. I., & Garcia-Sastre, A. (2005). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol, 79(13), 8004-8013. doi: 10.1128/JVI.79.13.8004-8013.2005
Munoz-Jordan, J. L., Sanchez-Burgos, G. G., Laurent-Rolle, M., & Garcia-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 100(24), 14333-14338. doi: 10.1073/pnas.2335168100
Noda, T., Fujita, N., & Yoshimori, T. (2014). The Ubi brothers reunited. Autophagy, 4(4), 540-541. doi: 10.4161/auto.5973
Ong, S. P., Lee, L. M., Leong, Y. F., Ng, M. L., & Chu, J. J. (2012). Dengue virus infection mediates HMGB1 release from monocytes involving PCAF acetylase complex and induces vascular leakage in endothelial cells. PloS one, 7(7), e41932. doi: 10.1371/journal.pone.0041932
Panyasrivanit, M., Khakpoor, A., Wikan, N., & Smith, D. R. (2009). Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol, 90(Pt 2), 448-456. doi: 10.1099/vir.0.005355-0
Peyrefitte, C. N., Pastorino, B., Bessaud, M., Tolou, H. J., & Couissinier-Paris, P. (2003). Evidence for in vitro falsely-primed cDNAs that prevent specific detection of virus negative strand RNAs in dengue-infected cells: improvement by tagged RT-PCR. J. Virol. Methods, 113(1), 19-28. doi: 10.1016/s0166-0934(03)00218-0
Ponpuak, M., Mandell, M. A., Kimura, T., Chauhan, S., Cleyrat, C., & Deretic, V. (2015). Secretory autophagy. Curr. Opin. Cell Biol., 35, 106-116. doi: 10.1016/j.ceb.2015.04.016
Ramirez, A. H., Moros, Z., Comach, G., Zambrano, J., Bravo, L., Pinto, B., . . . Liprandi, F. (2009). Evaluation of dengue NS1 antigen detection tests with acute sera from patients infected with dengue virus in Venezuela. Diagn. Microbiol. Infect. Dis., 65(3), 247-253. doi: 10.1016/j.diagmicrobio.2009.07.022
Rey, F. A. (2003). Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc Natl Acad Sci U S A, 100(12), 6899-6901. doi: 10.1073/pnas.1332695100
Rodenhuis-Zybert, I. A., Wilschut, J., & Smit, J. M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell. Mol. Life Sci., 67(16), 2773-2786. doi: 10.1007/s00018-010-0357-z
Samsa, M. M., Mondotte, J. A., Iglesias, N. G., Assuncao-Miranda, I., Barbosa-Lima, G., Da Poian, A. T., . . . Gamarnik, A. V. (2009). Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog., 5(10), e1000632. doi: 10.1371/journal.ppat.1000632
Seglen, P. O., & Brinchmann, M. F. (2010). Purification of autophagosomes from rat hepatocytes. Autophagy, 6(4), 542-547. doi: 10.4161/auto.6.4.11272
Sha, Y., Zmijewski, J., Xu, Z., & Abraham, E. (2008). HMGB1 Develops Enhanced Proinflammatory Activity by Binding to Cytokines. J Immunol, 180(4), 2531-2537. doi: 10.4049/jimmunol.180.4.2531
Su, W. C., Chao, T. C., Huang, Y. L., Weng, S. C., Jeng, K. S., & Lai, M. M. (2011). Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol, 85(20), 10561-10571. doi: 10.1128/JVI.00173-11
Tang, D., Shi, Y., Kang, R., Li, T., Xiao, W., Wang, H., & Xiao, X. (2007). Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol., 81(3), 741-747. doi: 10.1189/jlb.0806540
Tang, W. C., Lin, R. J., Liao, C. L., & Lin, Y. L. (2014). Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol, 88(12), 6793-6804. doi: 10.1128/JVI.00045-14
van Beijnum, J. R., Buurman, W. A., & Griffioen, A. W. (2008). Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis, 11(1), 91-99. doi: 10.1007/s10456-008-9093-5
Wang, T., Ming, Z., Xiaochun, W., & Hong, W. (2011). Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell. Signal., 23(3), 516-521. doi: 10.1016/j.cellsig.2010.09.012
Wu, Y. W., Mettling, C., Wu, S. R., Yu, C. Y., Perng, G. C., Lin, Y. S., & Lin, Y. L. (2016). Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization. Sci Rep, 6, 32243. doi: 10.1038/srep32243
Xu, X. F., Chen, Z. T., Zhang, J. L., Chen, W., Wang, J. L., Tian, Y. P., . . . An, J. (2008). Rab8, a vesicular traffic regulator, is involved in dengue virus infection in HepG2 cells. Intervirology, 51(3), 182-188. doi: 10.1159/000151531
Yamada, S., & Maruyama, I. (2007). HMGB1, a novel inflammatory cytokine. Clin Chim Acta, 375(1-2), 36-42. doi: 10.1016/j.cca.2006.07.019
校內:2018-08-30公開