| 研究生: |
陸品潔 Lu, Pin-Jie |
|---|---|
| 論文名稱: |
探討熱逆境對番茄生殖生長的影響 Effects of heat stress on reproductive development in tomato |
| 指導教授: |
李瑞花
Lee, Ruey-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 熱休克因子 、熱休克蛋白 、熱逆境反應 、花粉發育 、花粉活性 、絨氈層PCD 、番茄 |
| 外文關鍵詞: | heat shock factor, heat shock protein, heat stress response, pollen development, pollen viability, tapetal PCD, tomato |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫會對番茄生長與發育有不良影響,並使番茄結果率和產量下降。其中,植物的雄配子體,包括花藥以及花粉,在發育的各個階段對高溫特別敏感。絨氈層是花粉囊周圍的一層孢子體細胞,扮演營養及分泌組織對花粉發育扮演重要角色。絨氈層在四分子期會啟動程序性細胞死亡(PCD),以提供水解酶從四分體中釋放小孢子,調節小孢子的發育並提供養分供給花粉壁的形成。而絨氈層程序性細胞死亡的時間和進程由進化保守的轉錄網絡嚴格地調控。植物熱逆境反應(heat stress response)會發展出複雜的熱逆境反應相關基因的轉錄及轉錄調控網路以得到抵抗熱逆境的能力(thermotolerance),這些熱逆境反應基因大都為轉錄因子包括熱休克因子(HSFs)與熱休克蛋白(HSPs)。我們利用從世界蔬菜中心獲得的耐熱番茄品系(CLN1621L)與熱敏感番茄品系(CA4)作為研究材料,探討熱逆境對花粉發育的影響,並探討一些阿拉伯芥熱逆境反應垂直同源基因在番茄不同花發育時期的表現模式,是否這些基因在熱逆境下也會被誘導表現。我們依據花粉的發育分為六個花的發育時期包括SI, 小孢子母細胞期、SII, 減數分裂到四分體期、SIII, callose分解到自由小胞子期、SIV,液泡化小孢子到極化小孢子期、SV,不對稱有絲分裂及雙核期和SVI, 成熟雙核期。CA4在熱逆境環境下生長比CLN1621L明顯使花粉數及發芽率下降,塑膠切片顯微鏡觀察發現兩個品種生長在熱逆境下,花藥內絨氈層細胞自殺發生時間明顯不同,CA4在減數分裂初期絨氈層就開始瓦解,而CLN1621L到四分體期才有觀察到這個現象。我們也分析七個熱逆境反應基因(HSFA1b, HSFA2, HSFB1, HSFB2b, HSP70.8, HSP70.10 and HSP90)表現模式,這些基因比起CA4,CLN1621L不同發育期在熱逆境下明顯被誘導表現尤其是SV時期。我們的結果顯示CA4的絨氈層在熱逆境下提早啟動PCD,可能造成花粉數極低的原因,再者熱逆境下CLN1621L會大量表現熱逆境反應基因可能是維持花粉活性的重要因素。
The high temperature will adversely affect tomato growth and development, and reduce the fruiting rate and the yield. The male gametophytes, including anthers and pollens, are particularly sensitive to high temperature at various stages of the development. The tapetum is a layer of somatic cells surrounding the pollen sac, which function as a nutritive and secretory tissue plays an important role in the development of microspore and early pollen. The tapetum undergoes programmed cell death (PCD) during late stages of microspore development also provide enzymes for the release of microspores from the tetrad and regulates the formation of the exine. Heat stress response (HSR) in plants involved the complex networks of transcriptional and post-translational regulation of the transcription factors including heat shock factors (HSFs) and heat shock proteins (HSPs). In this study, we used the heat-tolerant (CLN1621L) and the heat-sensitive (CA4) tomato cultivars obtained from the World Vegetable Center. In this study, we compared the effects of high temperature on pollen development, and examined whether or not some of HSR othologous genes to Arabidopsis were activated in tomato floral tissues under heat stress. The flower buds were divided into six stages based on stages of pollen development (SI, pre-meiosis stage; SII, meiosis to tetrad stage; SIII, callose degradation to free microspore stage; SIV, free vacuolated to polarized microspore stage; SV, mitosis to early bicellular pollen; and SVI, mature bicellular pollen). The pollen viability and germination were significantly reduced in CA4 than CLN1621L when plant grown under heat stress condition. Tissue sections were prepared from epoxy resin embedding and used for light microscopy studies. We observed tapetal PCD at early meiosis in CA4 compared to at tetrad stage in CLN1621L under heat stress condition. The expression patterns of seven HSR genes (HSFA1b, HSFA2, HSFB1, HSFB2b, HSP70.8, HSP70.10 and HSP90) were also examined. These HSR genes were significantly induced in CLN1621L than CA4 under heat stress condition, and were preferentially expressed in SV Stage. Our data suggested that pre-matured tapetal PCD in CA4 maybe the main cause of low pollen production. High levels of HSR gene transcripts in CLN1621L might play important function in maintaining pollen viability under heat stress condition.
Abdalla, A. A. and Verkerk, K. Growth, flowering and fruit set of the tomato at high temperature. Neth. J. Agr. Sci. 16: 71-76. 1968.
Abdul-Baki, A. A. Tolerance of tomato cultivars and selected germplasm to heat
stress. J. Amer. Soc. Hort. Sci. 116(6): 1113-1116. 1991.
Abiko et al. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition Sex. Plant Reprod., 18, pp. 91-100. 2005.
Aien, A., Khetarpal, S., & Pal, M. Photosynthetic characteristics of potato cultivars grown under high temperature. American-Eurasian Journal of Agriculture & Environmental Sciences, 11, 633–639. 2011.
Ainsworth, E.A., Beier, C., Calfapietra, C., Ceulemans, R., Durand-Tardif, M., Farquhar, G.D., Godbold, D.L., Hendrey, G.R., Hickler, T., Kaduk, J., Karnosky, D.F., Kimball, B.A., Korner, C., Koornneef, M., Lafarge, T., Leakey, A.D., Lewin, K.F., Long, S.P., Manderscheid, R., McNeil, D.L., Mies, T.A., Miglietta, F., Morgan, J.A., Nagy, J., Norby, R.J., Norton, R.M., Percy, K.E., Rogers, A., Soussana, J.F., Stitt, M., Weigel, H.J. and White, J.W. Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant, cell & environment 31, 1317-1324. 2008.
Ainsworth, E.A. and Ort, D.R. How do we improve crop production in a warming world? Plant physiology 154, 526-530. 2010.
Alexander R. McN. Optimum walking techniques for quadrupeds and bipeds. Journal of Zoology, 192, 1, 97-117. 1980.
Alia, H. H., Sakamoto, A., & Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. The Plant Journal, 16, 155–161. 1998.
Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, et al. Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol.;160:41–9. 2003.
Ahmad, A., Diwan, H., & Abrol, Y. P. Global climate change, stress and plant productivity. In A. Pareek, S. K. Sopory, H. J. Bohnert, & Govindjee (Eds.), Abiotic stress adaptation in plants: Physiological, molecular and genome foundation (pp. 503–521). 2010.
Apel, K., & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. 2004.
Arshad, M., & Frankernberger, W. T., Jr. Ethylene: Agricultural sources and applications (342 pp). 2002.
Ashraf, M., & Foolad, M. R. Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223–271. 2005.
Asif Saeed, Khizar Hayat, Asif Ali Khan and Sajid Iqbal. Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). Int. J. Agri. Biol., Vol. 9, No. 4, 649-652. 2007.
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD et al.: Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci, 29:471-487. 2004.
Berry, S.Z. and M. Rafique-Ud-Din. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. Hort. Sci., 23: 606–8. 1988.
Bharti, K. et al. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16, 1521–1535. 2004.
Bita, C.E., Zenoni, S., Vriezen, W.H., Mariani, C., Pezzotti, M. and Gerats, T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heatsensitive tomato plants. BMC genomics 12, 384. 2011.
Bita, C. E., & Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat tolerance crops. Frontier in Plant Science, 4, 273–296. 2013.
Blum, A. Plant breeding for stress environment. Boca Raton, FL: CRC Press. 1988.
Blumenthal, C. S., Batey, I. L., Bekes, F., Wrigley, C. W., & Barlow, E. W. R. Gliadin genes contain heat shock elements: Possible relevance to heat induced changes in grain quality. Journal of Cereal Science, 11, 185–188. 1990.
Board, J. E., & Kahlon, C. S. Soybean yield formation: What controls it and how it can be improved? In H. A. El-Shemy (Ed.), Soybean physiology and biochemistry (pp. 1–36). 2011.
Bokszczanin KL, Fragkostefanakis S. Thermotolerance SP Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science 4. doi:10.3389/Fpls.2013.00315. 2013.
Bohnert, H. J., Gong, Q., Li, P., & Ma, S. Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology, 9, 180–188. 2006.
Boote KJ, Allen LH, Prasad PVV, Baker JT, Gesch RW, Snyder AM, Pan D Thomas JMG. Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. Journal of Agricultural Meteorology of Japan 60, 469–474. 2005.
Cai CF, Zhu J, Lou Y, Guo ZL, Xiong SX, Wang K, Yang ZN. The functional analysis of
OsTDF1 reveals a conserved genetic pathway for tapetal development between rice
and Arabidopsis. Sci Bull.;60 (12):1073–82. 2015.
Camejo, D., Jiménez, A., Alarcón, J. J., Torres, W., Gómez, J. M., and Sevilla, F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 33, 177–187. doi: 10.1071/FP05067. 2006.
Camejo, D., Rodríguez, P., Morales, M. A., Dell’amico, J. M., Torrecillas, A., and Alarcón, J. J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162, 281–289. doi: 10.1016/j.jplph.2004.07.014. 2005.
Cavrak, V.V. et al. How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet. 10, e1004115. 2014.
Cazalé A.-C., Clément M., Chiarenza S., Roncato M.-A., Pochon N., Creff A., . . . Noël L.D. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. Journal of Experimental Botany 60, 2653–2664. 2009.
Chan-Schaminet K.Y., Baniwal S.K., Bublak D., Nover L. & Scharf K.D. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. The Journal of Biological Chemistry 284, 20848–20857. 2009.
Charng, Y-Y. et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251–262. 2007.
Chen, H.H., Shen, Z-Y. and Li, P.H. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725. 1982.
Chen, T. H. H., & Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250–257. 2002.
Cheng, L., Sun, R. R., Wang, F. Y., Peng, Z., Kong, F. L., Wu, J., Cao, J. S., & Lu, G. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. Journal of Biomedicine and Biotechnology, 13, 283–297. 2012.
Cho E.K. & Choi Y.J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnology Letters 31, 597–606. 2009.
Christensen, J.H. and Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change 81, 7-30. 2007.
Crafts-Brandner, S. J., & Salvucci, M. E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97, 13430–13435. 2000.
Craita Elena Bita. Heat stress tolerance responses in developing tomato anthers. PhD thesis, Wageningen University. 2016.
Cyril, J., Powell, G. L., Duncan, R. R., & Waird, W. V. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Science, 42, 2031–2037. 2002.
Daie, J., & Campbell, W. F. Response of tomato plants to stressful temperatures: Increase in abscisic acid concentrations. Plant Physiology, 67, 26–29. 1981.
Dane F, Hunter AG, Chambliss OL. Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high temperature field conditions. J Amer Soc Hort Sci 116 (906-910):906-910. 1991.
Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357. 1998.
Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665. 2000.
Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 63, 419–428. 2012.
Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., & Tan, D. K. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9–19. 2013.
Dinar M, Rudich J. Effect of heat stress on assimilate metabolism in tomato flower buds. Annals of Botany 56, 249-257. 1985a.
Dinar, M., & Rudich, J. Effect of heat stress on assimilates partition in tomato. Ann. Bot. 56: 239-249. 1985.
Ding, W., Song, L., Wang, X., & Bi, Y. Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biologia Plantarum, 54, 607–613. 2010.
Ding, Y. et al. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3, 740. 2012.
Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199, 171–177. 2013.
El-Ahmadi AB, Stevens MA. Reproductive responses of heat-tolerant tomatoes to high temperatures. Journal of the American Society for Horticultural Science 104, 686-91. 1979.
Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., … Kawagishi-Kobayashi, M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiology, 50, 1911–1922. 2009.
Firon, N., Shaked, R., Peet, M., Pharr, D., Zamski, E., Rosenfeld, K., Althan, L. and Pressman, E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae 109, 212-217. 2006.
Foolad, M. R. Breeding for abiotic stress tolerances in tomato. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches (pp. 613–684). 2005.
Foolad MR. Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics 2007:64358. doi:10.1155/2007/64358. 2007.
Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, Mishra SK, Tschiersch B, Theres K, Bovy A, Schleiff E, Scharf KD. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol 170: 2461–2477. 2016b.
Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S. and Firon, N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of experimental botany 60, 3891-3908. 2009.
Gan, Y., Wang, J., Angadi, S.V., & Mcdonald, C. L. Response of chickpea to short periods of high temperature and water stress at different developmental stages. 4th International Crop Science Congress, Brisbane. 2004.
Garcia-Mata, C., & Lamattina, L. Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology, 128, 790–792. 2002.
Goldberg RB, Beals TP, Sanders PM. Anther development: basic principles and practical applications. Plant Cell.; 5:1217–29. 1993.
Gong, M., Li, Y. J., & Chen, S. Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 153, 488–496. 1998.
Gorantla, M., Babu, P., Lachagari, V.B.R., Reddy, A., Wusirika, R., Bennetzen, J.L. and Reddy, A.R. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. Journal of experimental botany 58, 253-265. 2007.
Gross, Y., & Kigel, J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212. 1994.
Guo, F., Okamoto, M., & Crawford, N. M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 302, 100–103. 2003.
Guo, F. L., Yu, J., Tao, J., Su, J., & Zhang, C. H. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of Euphorbia pulcherrima. Journal of Yangzhou University Agricultural and Life Science Edition, 30, 71–74. 2009.
Gurley, W.B. HSP101: a key component for the acquisition of thermotolerance in plants. Science Signaling 12, 457. 2000.
Hahn A., Bublak D., Schleiff E. & Scharf K.-D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. The Plant Cell 23, 741–755. 2011.
Hartl, F. U., Bracher, A., & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332. 2011.
Hall. A. E. Plant adaptation to hot and dry stresses in relation to horticultural plant breeding. p. 44-48. In: Plenary lectUre, XXIII Int. Horticultural Congress, Firenze, Italy. August 27-September I, 1990.
Hall, A. E. Breeding for heat tolerance. In J. Janick (Ed.), Plant breeding reviewers (pp. 129–168). 1992.
Hanna, H.Y. and T.P. Hernandez. Response of six tomato genotypes under summer and spring weather conditions in Louisiana. Hort. Sci., 17: 758–9. 1982.
Hasanuzzaman, M., Hossain, M. A., da Silva, J. A., & Fujita, M. Plant responses and tolerance to abiotic oxidative stress: Antioxidant defences is a key factors. In B. Venkateswarlu, A. K. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 261–315). 2012.
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14 (5):9643-9684. doi:10.3390/ijms14059643. 2013.
Havaux, M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16, 461–467. doi: 10.1111/j.1365-3040.1993.tb00893.x. 1993.
Hazra P, Ansary SH, Dutta AK, Balacheva E, Atanassova B. Breeding tomato tolerant to high temperature stress. Acta hort 830:241-248. 2009.
He, Y., Liu, Y., Cao, W., Hua, W., Xu, B., & Huang, B. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995. 2005.
Heckathorn, S. A., Ryan, S. L., Baylis, J. A., Wang, D., Hamilton, E. W., Cundiff, I. L., & Luth, D. S. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Functional Plant Biology, 29, 933–944. 2002.
Heerklotz D., Döring P., Bonzelius F., Winkelhaus S. & Nover L. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Molecular and Cellular Biology 21, 1759–1768. 2001.
Hewitt, F. R., Hough, T., Neill, O. P., Sasse, J. M., Williams, E. G., & Rowan, K. S. Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of prunus avium using a multiple hangingdrop assay. Australian Journal of Plant Physiology, 12, 201–211. 1985.
Hilker, M. et al. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 91, 1118–1133, 2016.
Honys D, Renak D, Twell D. Male gametophyte development and function, vol 1. Global sciences books. 2006.
Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M. L., Munnik, T., & Saidi, Y. Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 51, 208–220. 2012.
Howarth, C. J., & Ougham, H. J. Gene expression under temperature stress. New Phytologist, 125, 1–26. 1993.
Howarth, C. J., Pollock, C. J., & Peacock, J. M. Development of laboratory based methods for assessing seedling thermotolerance in pearl millet. New Phytologist, 137, 129–139. 1997.
Hurd RG, Cooper AJ. The effect of early low temperature treatment on the yield of single inflorescence tomatoes. J Hortic Sci 45:19-27. 1970.
Huve, K., Bichele, I., Tobias, M., & Niinemets, U. Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant Cell & Environment, 29, 212–218. 2005.
Ikeda M., Mitsuda N. & Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243–1254. 2011.
Islam, M. T. Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. International Journal of Sustainable Crop Production, 6, 14–16. 2011.
Ito, H. et al. A siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472, 115–119. 2011.
IWAHORI, S. and K. TAKAHASHI. High temperature injuries in tomato. III. Effects of high temperature on flower buds and flowers of different stages of development. (in Japanese with English summary) Jour. Jap. Soc. Hort. Sci. 33: 67-74. 1964.
Iwasaki, M. and Paszkowski, J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc. Natl. Acad. Sci. U. S. A. 111, 8547–8552. 2014.
Jaggard, K.W., Qi, A. and Ober, E.S. Possible changes to arable crop yields by 2050. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365, 2835-2851. 2010.
Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227, 67–79. 2007.
Jiang, Y., & Haung, B. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 52, 341–349. 2001.
Kakkar, R. K., & Sawhney, V. K. Polyamine research in plants a changing perspective. Plant Physiology, 116, 273–429. 2002.
Kaplan, F. et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136, 4159–4168. 2004.
Katiyar-Agarwal, S., Agarwal, M., & Grover, A. Heat tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology, 51, 677–686. 2003.
Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., & Nayyar, H. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40, 1334–1349. 2013.
Kays, S.J., Pre-harvest factors affecting appearance, Postharvest. Biol. Technol., 15: 233-247, 1999.
Kim, K., & Portis, A. R. Temperature dependence of photosynthesis in arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiology, 46, 522–530. 2005.
Kinet JM, Peet MM. The physiology of vegetable crops. In:Wien HC, ed. Tomato. Wallingford UK: CAB International, 207–258. 1997.
Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246. doi: 10.1016/j.pbi.2004.03.014. 2004.
Koskull-Döring, P. et al. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452–457. 2007.
Kotak S., Port M., Ganguli A., Bicker F. & von Koskull-Döring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant Journal: For Cell and Molecular Biology 39, 98–112. 2004.
Koti, S., Reddy, K. R., Kakani, V. G., Zhao, D., & Reddy, V. R. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany, 56, 725–736. 2005.
Krishna P. & Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress and Chaperones 6, 238–246. 2001.
Kumar, S., Thakur, P., Kaushal, N., Malik, J. A., Gaur, P., & Nayyar, H. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archieves of Agronomy & Soil Science, 59, 823–843. 2013.
Kuo C.G., Chen B.W., Chou M.H, Tsai C.L. & Tsay T.S. Tomato fruit-set at high temperatures. In Proceedings of the 1st International Symposium on Tropical Tomato, 23–27 October 1978 at Shanhua, Tainan 741, Taiwan, Republic of China,
pp. 94–109. Asian Vegetable Research Development Center Publication no. 78–59. 1979.
Laghri, K. A., Mahboob, A. S., & Arain, M. A. Effect of high temperature stress on
grain yield and yield components of wheat (Triticum aetivum L.). Science
Technology & Development, 31, 83–90. 2012.
Lämke, J. et al. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35, 162–175. 2016.
Larkindale, J. and Vierling, E. Core genome responses involved in acclimation to high temperature. Plant physiology 146, 748-761. 2008.
Levitt, J. Freezing resistance—Types, measurement and changes. In Responses of
plants to environmental stress, chilling, freezing, and high temperature stress (Vol. 1,
pp. 137–141). 1980.
Levy, A., Rabinowitch, H. and Kedar, N. Morphological and physiological
characters affecting flower drop and fruit set of tomatoes at high temperatures.
Euphytica 27, 211-218. 1978.
Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J,
Wen TQ, Huang H, Luo D, Ma H, Zhang DB. The rice tapetum degeneration
retardation gene is required for tapetum degradation and anther development. Plant
Cell.; 18(11):2999–3014. 2006.
Li, S., Li, F., Wang, J., Zhang, W., Meng, Q., Chen, T. H. H., Murata, N., & Yang, X.
Glycinebetaine enhances the tolerance of tomato plants to high temperature
during germination of seeds and growth of seedlings. Plant Cell & Environment, 34,
1931–1943. 2011.
Li, Z., Palmer, W. M., Martin, A. P., Wang, R., Rainsford, F., Jin, Y.,et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 63, 1155–1166. doi: 10.1093/jxb/err329. 2012.
Ling, Y. et al. Termopriming triggers splicing memory in Arabidopsis. J Exp Bot 69, 2659–2675, 2018.
Liu, X., & Huang, B. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. Journal of the American Society for Horticultural Science, 125, 442–447. 2000.
Liu, J. X., Liao, D. Q., Oane, R., Estenor, L., Yang, X. E., Li, Z. C., & Bennett, J. Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Research, 97, 87–100. 2006.
Liu, H-C. et al. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738–751. 2011.
Liu, H. and Charng, Y. Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant signaling & behavior 7, 0--1. 2012.
Liu H.C. & Charng Y.Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiology 163, 276–290. 2013.
Lobell, D.B. and Asner, G.P., Climate and management contributions to recent trends in U.S. agricultural yields, Science, 299: 1032, 2003.
Lobell, D.B. and Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters 2, 014002. 2007.
Lohar, D. and Peat, W. Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae 73, 53-60. 1998.
Lwahori. S. High temperature injuries in tomato. IV. Development of normal flower
buds and morphological abnormalities of flower buds treated with high temperature. J. Japan. Soc. Hort. Sci. 34:33-41. 1965.
Machado, S., & Paulsen, G. M. Combined effects of drought and high temperature
on water relations of wheat and sorghum. Plant Soil, 233, 179–187. 2001.
Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, T., & Marmiroli, N.
Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant
Molecular Biology, 48, 667–681. 2002.
Mansoor, S., & Naqvi, F. N. Heat stress and acquisition of thermotolerance in
mung bean (Vigna radiata L.). International Journal of Biology and Biotechnology,
8, 77–84. 2011.
Mathur, S., & Jajoo, A. Effects of heat stress on growth and crop yield of wheat
(Triticum aestivum). In A. Ahmad & M. R. Wani (Eds.), Physiological
mechanisms and adaptation strategies in plants under changing environment (Vol.
1, pp. 163–191). 2014.
Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense Priming: An Adaptive Part of
Induced Resistance. Annu Rev Plant Biol 68, 485–512, 2017.
Mazorra, L. M., Nunez, M., Echerarria, E., Coll, F., & SánchezBlanco, M. J.
Influence of brassinosteriods and antioxidant enzymes activity in tomato under
different temperatures. Biologia Plantarum, 45, 593–596. 2002.
Milioni D. & Hatzopoulos P. Genomic organization of hsp90 gene family in
Arabidopsis. Plant Molecular Biology 35, 955–961. 1997.
Mingpeng, H., Yongge, G., Chengzhang, W., Fangrui, S., Yanhua, W., & Xiaoxia, Z.
Related studies on the effects of high temperature stress on alfalfa and its
heat resistance mechanism. Genomics and Applied Biology, 29, 563–569. 2010.
Mishina, T. E., Lamb, C., & Zeier, J. Expression of a nitric oxide degrading
enzyme induces a senescence programme in Arabidopsis. Plant Cell &
Environment, 30, 39–52. 2007.
Mishra, S.K. et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555–1567. 2002.
Momcilovic, I., & Ristic, Z. Expression of chloroplast protein synthesis elongation
factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during
early stages of plant development. Journal of Plant Physiology, 164, 90–99. 2007.
Moore, E. L & Thomas, W. O. Some effects of shading and paracholorophenoxy acetic acid on fruitfulness of tomatoes. Proceedings of the American Society for Horticulture science 60: 289-294. 1952.
Morrison, M. J., & Stewart, D. W. Heat stress during flowering in summer Brassica. Crop Science, 42, 797–803. 2002.
Muller F, Rieu I. Acclimation to high temperature during pollen development. Plant Reproduction 29 (1-2):107-118. 2016.
Murkowski, A. Heat stress and spermidine: Effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum, 44, 53–57. 2001.
Nayyar, H., Bains, T., & Kumar, S. Low temperature induced floral abortion in chickpea: Relationship to abscisic acid and cryoprotectants in reproductive organs. Environmental and Experimental Botany, 53, 39–47. 2005.
Neill, S. J., Desikan, R., Clarke, A., & Hancock, J. T. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology, 128, 13–16. 2002.
Nishizawa, A. et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535–547. 2006.
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun.; 4:1445. 2013.
Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A. and Scharf, K.D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell stress & chaperones 6, 177. 2001.
Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogués, S. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57. 2008.
Ohama, N. et al. The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28, 181–201. 2016.
van Oosten-Hawle P., Porter R.S. & Morimoto R.I. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153, 1366–1378. 2013.
Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M. and Higashitani, A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics 278, 31-42. 2007.
Oshino et al. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations Plant Cell Environ., 34, pp. 284-290. 2011.
Osorio, A. et al. Lipid profles and oxidative stress parameters in male and female hemodialysis patients. Mol Cell Biochem 353, 59–63, 2011.
Pacini E. Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9:362-366. 1996.
Papini, S. Mosti, L. Brighigna Programmed-cell-death events during tapetum development of angiosperms Protoplasma, 207, pp. 213-221. 1999.
Pareek, A., Singla, S. L., & Grover, A. Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Sciences, 75, 1023–1035. 1998.
Parish, R.W., Phan, H.A., Iacuone, S. and Li, S.F. Tapetal development and abiotic stress: a centre of vulnerability. Functional plant biology 39, 553-559. 2012.
Park, S. M., & Hong, C. B. Class I small heat-shock protein gives thermotolerance in tobacco. Journal of Plant Physiology, 159, 25–30. 2002.
Peet, M. M, Willits, D. H & Gardner, R. G. Response of ovule development and post pollen production process in male sterile tomatoes to chronic, sub-acute high temperature stress. Journal of experimental botany 48: 101-111. 1997.
Peet MM, Sato S, Gardner RG. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment 21, 225–231. 1998.
Plieth, C., Hansen, U. P., Knight, H., & Knight, M. R. Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant Journal, 18, 465–576. 1999.
Piramila, B. H. M., Prabha, A. L., Nandagopalan, V., & Stanley, A. L. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. International Journal of Pharmaceutical and Phytopharmacological Research, 1, 194–202. 2012.
Pospisilova, J., Synkova, H., Haisel, D., & Batkova, P. Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biologia Plantarum, 53, 11–20. 2009.
Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., & Jansen, M. A. K. Stress-induced morphogenic responses: Growing out of trouble? Trends in Plant Science, 12, 98–105. 2007.
Prändl, R. et al. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet. 258, 269–278. 1998.
Prasad, P. V. V., Craufurd, P. Q., & Summerfield, R. J. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annals of Botany, 84, 381–386. 1999.
Prasad, N.G., Dey, S., Shakarad, M. and Joshi, A. The evolution of population stability as a by-product of life-history evolution. Proceedings. Biological sciences / The Royal Society 270 Suppl 1, S84-86. 2003.
Prasad, P. V. V., Boote, K. J., Vu, J. C. V., & Allen, L. H. The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Science, 166, 1565–1573. 2004.
Prasad, P., Pisipati, S., Mutava, R. and Tuinstra, M. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48, 1911-1917. 2008.
Pressman, E., Peet, M. M., and Pharr, D. M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Ann. Bot. 90, 631–636. 2002.
Prusakova, L. D., Ezhov, M. N., & Salnikov, A. I. The use of emistim, epibrassinolide and uniconazole to overcome quality difference of buckwheat grains. Agrarian Russia, 1, 41–44. 1999.
Queitsch, C., Hong, S. W., Vierling, E., & Lindquest, S. Heat shock protein 101 plays a crucial role in thermotolerance in arabidopsis. The Plant Cell Online, 12, 479–492. 2000.
Rasheed, R., Wahid, A., Ashraf, M., & Basra, S. M. A. Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. International Journal of Agricultural and Biology, 12, 1–8. 2010.
Raskin, I. Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463. 1992.
Rick, C. M., and W. H. Dempsey. Position of the stigma in relation to fruit setting in
tomato. Bot. Gaz. 130:180-186. 1989.
Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol Cell 40, 253–266, 2010.
Rousch, J. M., Bingham, S. E., & Sommerfeld, M. R. Protein expression during
heat stress in thermo-intolerant and thermo-tolerant diatoms. Journal of
Experimental Marine Biology and Ecology, 306, 231–243. 2004.
Rudich. J., E. Zamski, and Y. Regev. Genotypic variation for sensitivity to high
temperature in the tomato: pollination and fruit set. Bot. Gaz. 138:448-452. 1977.
Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J., & Goloubinoff, P. The heat shock response in moss plants is regulated by specific calcium permeable channels in the plasma membrane. The Plant Cell Online, 21, 2829–2843. 2009.
Saidi, Y., Finka, A. and Goloubinoff, P. Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytologist 190, 556-565. 2011.
Sakata, T. and Higashitani, A. Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. International Journal of Plant Developmental Biology 2, 42-51. 2008.
Sakata, T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga, N. Higashitani, Y. Miyazawa, H. Takahashi, M. Watanabe, A. Higashitani. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. U. S. A., 107, 2010.
Salvucci, M. E., & Crafts-Brandner, S. J. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiologial Plantarum, 120, 179–186. 2004.
Sani, E., Herzyk, P., Perrella, G., Colot, V. & Amtmann, A. Hyperosmotic priming of
Arabidopsis seedlings establishes a long-term somatic memory accompanied by
specifc changes of the epigenome. Genome Biol 14, R59, 2013.
Saini, H. S., & Aspinall, D. Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Annals of Botany, 48, 623–633. 1981.
Saini, H. S., Sedgley, M., & Aspinall, D. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Australian Journal of Plant Physiology, 10, 137–144. 1983.
Sato S, Peet MM, Thomas JF. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell and Environment 23, 719–726. 2000.
Sato, S., Peet, M.M. and Thomas, J.F., Determining critical pre and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. Exposed to moderately elevated temperatures, J. Exp. Bot., 53: 1187-1195, 2002.
Sato, S., Kamiyama, M., Iwata, T.N., Makita, Furukawa, H. and Ikeda, H., Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development, Ann. Bot., 97: 731-738, 2006.
Saurez, R., Calderon, C., & Iturriaga, G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science, 49, 1791–1799. 2008.
Savchenko, G., Klyuchareva, E., Abramchik, L., & Serdyuchenko, E. Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 49, 349–359. 2002.
Savicka, M., & Škute, N. Some morphological, physiological and biochemical characteristics of wheat seedling Triticum aestivum L. organs after high temperature treatment. Ekologija, 58, 9–21. 2012.
Saxena, M. C., Saxena, N. P., & Mohamed, A. K. High temperature stress. In R. J. Summerfield (Ed.), World crops: Cool season food legumes (pp. 845–856). 1988.
Scharf K.D., Heider H., Höhfeld I., Lyck R., Schmidt E. & Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18, 2240–2251. 1998.
Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819: 104–119. 2012.
Schneider, S. H. The changing climate. Scientific American 281(3J70-79. 1989.
Schoffl, F., Prandl, R., & Reindl, A. Molecular responses to heat stress. In K. Shinozaki & K. Yamaguchi-Shinozaki (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants (pp. 81–98). 1999.
Schramm, F. et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53, 264–274. 2008.
Schreiber DN, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol.; 134 (3):1069–79. 2004.
Schuster, W. S., & Monson, R. K. An examination of the advantages of C3-C4 intermediate photosynthesis in warm environments. Plant Cell and Environment, 13, 903–912. 1990.
Senaratna, T., Merritt, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81. 2003.
Simoes-Araujo, J. L., Rumjanek, N. G., & Margis Pinheiro, M. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 37–41. 2003.
Singh, I., & Shono, M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth and Regulation, 47, 111–119. 2005.
Singh, S. and Sawhney, V. Abscisic acid in a male sterile tomato mutant and its regulation by low temperature. Journal of experimental botany 49, 199-203. 1998.
Snider, J. L., Oosterhuis, D. M., Skulman, B. W., & Kawakami, E. M. Heat stress induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137, 125–138. 2009.
Snider, J. L., Oosterhuis, D. M., Loka, D. A., & Kawakami, E.M. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Journal of Plant Physiology, 168, 1168–1175. 2011.
Soliman, W. S., Fujimori, M., Tase, K., & Sugiyama, S. Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Science, 57, 101–106. 2011.
Song, L., Ding, W., Shen, J., Zhang, Z., Bi, Y., & Zhang, L. Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Science, 175, 826–832. 2008.
Song, C., Chung, W. S. & Lim, C. O. Overexpression of heat shock factor gene HsfA3 increases galactinol levels and oxidative stress tolerance in Arabidopsis. Mol Cells 39, 477–483, 2016.
Srinivasan, A., Saxena, N. P., & Johansen, C. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.), genetic variation in gamete development and function. Field Crops Research, 60, 209–222. 1999.
Srivastava, R. et al. Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Front. Plant Sci. 5, 59. 2014.
Sukhvibul, N., Whiley, A. W., Smith, M. K., Hetherington, S. E., & Vithanage, V. Effect of temperature on inflorescence and floral development in four mango (Mangifera indica L.) cultivars. Scientia Horticulturae, 82, 67–84. 1999.
Sullivan, C. Y. Mechanisms of heat and drought resistance in grain soghum and methods of measurement. In N. G. P. Rao & L. R. House (Eds.), Sorghum in the seventies (pp. 247–264). 1972.
Sun YJ, Hord CL, Chen CB, Ma H. Regulation of Arabidopsis early anther development by putative cell-cell signaling molecules and transcriptional regulators. J Integr Plant Biol.; 49(1):60–8. 2007.
Sung, D. Y., Kaplan, F., Lee, K. J., & Guy, C. L. Acquired tolerance to temperature extremes. Trends in Plant Science, 8, 179–187. 2003.
Suzuki, K., Tsukaguchi, T., Takeda, H., & Egawa, Y. Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126, 571–574. 2001.
Suzuki, N. et al. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J. 66, 844–851. 2011.
Taipale M., Jarosz D.F. & Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews. Molecular Cell Biology 11, 515–528. 2010.
Taiz, L. and Zeiger, E. Stress physiology. Plant Physiology, Taiz, L. and E. Zeiger (Eds.). Sinauer Associates, Inc., Sunderland, MA, 671-681. 2006.
Takeoka, Y., Hiroi, K., Kitano, H., & Wada, T. Pistil hyperplasia in rice spikelets as affected by heat-stress. Sexual Plant Reproduction, 4, 39–43. 1991.
Tang, T. et al. Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci Rep 6, 33650, 2016.
Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., Daga, A., Selmin, A., Monger, K., Benna, C., Rosato, E., Kyriacou, C.P. and Costa, R. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895-1898. 2007.
Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 67, 429–443. 2010.
Thussaganpanit, J., Jutmanee, K., Chai-Arree, W., & Kaveeta, L. Increasing photosynthetic efficiency and pollen germination with 24-epibrassinolide in rice (Oryza sativa L.), under heat stress. Thai Journal of Botany, 4, 135–143. 2012.
Trent, J. D. A Review of acquired thermotolerance, heatshock proteins, and molecular chaperones in Archaea. FEMS Microbiology Reviews, 18, 249–258. 1996.
Tripp, J., Mishra, S. K., & Scharf, K. D. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell and Environment, 32, 123–133. 2009.
Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., & Egawa, Y. Water status of flower buds and leaves as affected by high temperature in heat tolerant and heatsensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Production Science, 6, 4–27. 2003.
Vardhini, B. V., & Rao, S. S. R. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulation, 41, 25–31. 2003.
Varnier, F. Mazeyrat-Gourbeyre, R.S. Sangwan, C. Clement. Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J. Struct. Biol., 152, pp. 118-128. 2005.
Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant
Physiology Plant Mol. Biol. 42:579-620. 1991.
Vollenweider, P., & Günthardt-Goerg, M. S. Diagnosis of abiotic and biotic stress
factors using the visible symptoms in foliage. Environmental Pollution, 137, 455–
465. 2005.
Wahid, A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of Plant Research, 120, 219–228. 2007.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223. 2007.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252. 2004.
Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., Cheng, J. S., … Li, S. H. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10, 34. 2010.
Wang, L-C. et al. Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. J. Exp. Bot. 64, 1689–1701. 2013.
Went, F. W. Plant growth under controlled conditions. V. The relation between age,
light, variety and thennoperiodicity of tomatoes. Am. J. Bot. 32:489-479. 1945.
Wien HC. Peppers. In: Wien HC, ed. The physiology of vegetable crops. Wallingford, UK: CAB International, 259–293. 1997.
Wilson ZA, Zhang DB. From Arabidopsis to rice: pathways in pollen development. J Exp Bot.; 60(5):1479–92. 2009.
Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. D. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell and Environment, 27, 717–724. 2004.
Wu, H. C., & Jinn, T. L. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signaling & Behaviour, 5, 1252–1256. 2010.
Xiong, L., Lee, H., Ishitani, M., & Zhu, J. K. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. Journal of Biological Chemistry, 277, 8588–8596. 2002.
Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274–285. 2006.
Yang, X., Liang, Z., & Lu, C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138, 2299–2309. 2005.
Yang, H., Wu, F., & Cheng, J. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chemistry, 127, 1237–1242. 2011.
Yarwood, C. E. Acquired tolerance of leaves to heat. Science 134:941-942. 1961.
Yeh, C. H., Kaplinsky, N. J., Hu, C., & Charng, Y. Y. Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10–23. 2012.
Yin, H., Chen, Q., & Yi, M. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45–54. 2008.
Yoshida, T. et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368, 515–521. 2008.
Yoshida, T. et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286, 321–332. 2011.
Young, L.W., Wilen, R.W. and Bonham-Smith, P.C. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of experimental botany 55, 485-495. 2004.
Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224, 545–555. 2006.
Zhang, G. L., Chen, L. Y., Zhang, S. T., Zheng, H., & Liu, G. H. Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Science, 16, 65–71. 2009.
Zhang, X. et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62. 2009.
Zhang, J. X. et al. Te role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic
stress tolerance. Plant J. 62, 539–548, 2010.
Zhang S. S. et al. Tissue-specific transcriptomics reveals an important role of the
unfolded protein response in maintaining fertility upon heat stress in arabidopsis.
The Plant Cell, Vol. 29: 1007–1023. 2017.
Zhu J, Lou Y, Xu X, Yang ZN. A genetic pathway for tapetum development and function
in Arabidopsis. J Integr Plant Biol.; 53 (11):892–900. 2011.
Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. Temperature stress and plant
sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany,
61, 1959– 1968. 2010).