簡易檢索 / 詳目顯示

研究生: 謝惠娟
Hsieh, Hui-Chuan
論文名稱: 人類修復基因hHR23A和hHR23B的功能之研究
Functional studies of DNA repair genes hHR23A and hHR23B
指導教授: 黃溫雅
Huang, Wenya
張憲彰
Chan, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 65
中文關鍵詞: GADD45A基因修復hHR23干擾性RNA
外文關鍵詞: DNA repair, GADD45A, RNA interference, hHR23
相關次數: 點閱:145下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA修復是防禦細胞突變和細胞癌化的一個重要機制,但在此諸多因子參與影響之中,本研究想聚焦於釐清DNA修復基因人類hHR23A和hHR23B的功能。這兩個基因與酵母菌RAD23基因同源,均含有數個功能區域,包括N端的ubiquitin相似區域與兩個ubiquitin連結區域,以及和XPC鍵結區域。先前研究已顯示hHR23B蛋白質會與XPC蛋白質結合,並會參與整體基因核酸切除修復nucleotide excision repair (NER)的過程。此時,同存在於細胞中而與hHR23B極為相似的hHR23A,其在NER過程中的功能為我們所注目。

    為了探討hHR23A和hHR23B的功能,我們於HtTA1細胞導入了RNAi技術,對這兩個基因建立knock-down(KD)模式,並各分別設計了三個干擾性RNA的建構物(hHR23Ai和hHR23Bi),以試圖釐清hHR23A和hHR23B的功能。此結果得知,在HtTA1細胞能抑制內源性的hHR23A或hHR23B蛋白質表現量約為50%,繼之也發現hHR23A或hHR23B之KD細胞對於紫外線的敏感度比正常細胞較高。其次,利用寄主細胞再活化法,仔細觀察了hHR23A和hHR23B之KD細胞中的DNA修復活性,結果發現hHR23A和hHR23B都是NER所必須的,此在西南方墨點法也得到相同的結果。

    另外,也透過共免疫沉澱法之分析,觀察到活化NER的GADD45A蛋白質會與hHR23A鍵結,此乃表示hHR23A與GADD45A於體內應同在一個蛋白質複合體上。目前由文獻已得知GADD45A的表現有部份是受到腫瘤抑制者p53所調控,又本實驗室另一研究上也發現了hHR23A會與p53蛋白質鍵結之故,我們綜合之,推測hHR23A是與GADD45A和p53共同協調來執行它參與NER的功能。

    DNA repair is an essential mechanism for cellular defense to mutations and cancers. This project studies the functions of human DNA repair genes hHR23A and hHR23B. The human hHR23A and hHR23B genes are two sequence homologues of the Saccharomyces cerevisiae rad23 gene. These two factors both contain a few functional domains, including an ubiquitin-like (UBL) domain at the N-termini, two ubiquitin-associated (UBA) domains and an XPC-binding domain. Previous studies showed that the hHR23B protein is complexed with the XP group C (XPC) protein, defective in the xeroderma pigmentosum C syndrome, and is involved in the global genome nucleotide excision repair (NER) pathway. Therefore, the hHR23B is involved in NER. However, the function of hHR23A is not clear so far.
    To study the functions of hHR23A and B, we have employed the RNA interference (RNAi) techniques to construct the knock-down (KD) models for these two genes. The hHR23Ai and hHR23Bi constructs could reduce endogenous levels of the hHR23A or hHR23B in HtTA1 cells by around 50%. Either of the hHR23A or B KD cells were more sensitive to UV irradiation than the wild type cells were. By the host reactivation assay as well as the South-western blot to observe DNA repair activities in the hHR23A/B KD cells, we found that the hHR23A and B are required for NER. By co-immunoprecipitation analysis, we also found that NER activator GADD45 protein interacts with the hHR23A, indicating that the hHR23A is associated with the GADD45A in vivo. Other study in the lab also found that the hHR23A is associated with the tumor suppressor p53 protein.
    In conclusion, the hHR23A and hHR23B proteins are NER factors in vivo. And the fact that the hHR23A is associated with GADD45A suggests that the hHR23A is a NER factor and performs its functional role in concert with GADD45A and p53.

    目錄 中文摘要----------------------------------------------------------------Ⅰ 英文摘要----------------------------------------------------------------Ⅱ 目錄--------------------------------------------------------------------Ⅳ 表目錄----------------------------------------------------------------- Ⅵ 圗目錄----------------------------------------------------------------- Ⅶ 第一章 緒論 1.1前言-------------------------------------------------------------------- 1 1.2基因修復機制------------------------------------------------------------ 1 1.3紫外線對DNA之損傷------------------------------------------------------- 2 1.3.1環丁烷嘧啶雙體(cyclobutane pyrimidine dimers)--------------------- 2 1.3.2 6-4嘧啶光產物(6-4 photoproducts)--------------------------------- 2 1.4核酸切除修復------------------------------------------------------------ 3 1.4.1整體基因修復(GGR)------------------------------------------------- 4 1.4.2轉錄偶合修復(TCR)------------------------------------------------- 4 1.5 hHR23A與hHR23B -------------------------------------------------------- 5 1.6 GADD45A --------------------------------------------------------------- 7 1.7研究動機---------------------------------------------------------------- 8 1.8研究架構---------------------------------------------------------------- 9 第二章 實驗材料與方法 2.1細胞株和實驗藥品------------------------------------------------------- 14 2.1.1細胞培養--------------------------------------------------------- 14 2.1.2藥品------------------------------------------------------------- 15 2.2 Clone製備------------------------------------------------------------- 16 2.3抽取質體--------------------------------------------------------------- 17 2.4人類細胞的質體轉染----------------------------------------------------- 17 2.5短片段的干擾性RNA (short interference RNA,簡稱siRNA)------------------ 18 2.6細胞修復活性之試驗----------------------------------------------------- 19 2.6.1細胞之紫外線照射------------------------------------------------ 19 2.6.2利用化學藥品製造DNA損傷----------------------------------------- 19 2.6.3寄主細胞再活化分析---------------------------------------------- 19 2.7萃取細胞之蛋白質------------------------------------------------------- 20 2.8西方墨點法------------------------------------------------------------- 21 2.9西南方墨點法----------------------------------------------------------- 22 2.10蛋白質鍵結試驗-------------------------------------------------------- 23 2.10.1蛋白質之誘導表現----------------------------------------------- 23 2.10.2蛋白質之大量萃取----------------------------------------------- 24 2.10.3萃取細胞之蛋白質----------------------------------------------- 25 2.10.4蛋白質交互作用------------------------------------------------- 25 2.10.5免疫沉澱反應(immunoprecipitation)------------------------------ 25 2.10.6共免疫沈澱反應(co-IP)------------------------------------------ 25 2.10.7 GST鍵結試驗(GST binging)-------------------------------------- 26 2.11細胞存活率試驗-------------------------------------------------------- 26 2.12 TCR與GGR之試驗------------------------------------------------------- 27 2.13 XPC細胞體內位置之試驗------------------------------------------ 28 第三章 結果 3.1 hHR23受RNAi抑制後的蛋白質表現----------------------------------------- 32 3.2 hHR23A/B受RNAi抑制後對DNA修復NER活性的影響---------------------------- 33 3.3 hHR23對TCR和GGR之影響------------------------------------------------- 38 3.4 UBA區域的單點及多點突變對hHR23A修復能力的影響------------------------- 41 3.5 hHR23A與GADD45A的蛋白質複合體----------------------------------------- 43 3.6 hHR23A/B受RNAi抑制後對DNA修復BER活性的影響---------------------------- 48 3.7 GADD45A對NER的影響---------------------------------------------------- 50 第四章 結論--------------------------------------------------------------- 51 參考文獻------------------------------------------------------------------ 59

    參考文獻
    1. 1. Alcamo, I. E., 2001. DNA Technology, 2nded, Harcourt. New York.
    2. Agmi, R., 2002. RNAi and related mechanism and their potential use for
    therapy. Current Opinionin Chemical Biology, 6, 829-834.
    3. Adayabalam, S. B. and Vilhelm, A. B., 2000. Genomic heterogeneity of
    nucleotide excision repair. Gene, 250, 15-30.
    4. Bourre, F., Renault, G. and Sarasin, A., 1987. Sequence effect on alkali-
    sensitive sites in UV-irradiated SV40 DNA. Nucleic Acids Research, 15,
    8861-8875.
    5. Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J., 2001. Role for
    bidentate ribonuclease in the initiation step of RNA interference. Nature,
    409, 363-366.
    6. Berotolaet, B. L., Clarke, D. J., Wolff, M., Watson, M. H., Henze, M.,
    Divita, G. and Reed, S. I., 2001. UBA domains of DNA damage-inducible protein
    interact with ubiquitin. Nature Structural Biology, 8, 417-422.
    7. Cordonier, A. M. and Fuchs, R. P. P., 1999. Replication of
    damageDNA:molecular defect in xeroderma pigmentosum variant cells. Mutation
    Research, 435, 111-119.
    8. Chang, H. C., Tsai, J. H., Guo, Y. L: L., Huang, Y. H., Tsai, H. N., Tsai, P.
    C. and Huang, W., 2003. Differential UVC-induced gadd45 gene expression in
    xeroderma pigmentosum cells. Biochemical and Biophysical Research
    Communications, 305, 1109-1115.
    9. Carries, F., Smith, M. L., Bae, I., Kilpatrick, K. E., Lansing, T. J., Chen,
    C. Y., Engelstein, M., Friend, S. H., Henner, W. D., Gilmert, T. M., Kastan,
    M. B. and Fornace Jr, A. J., 1994. Characterization of human GADD45, a
    p53-regulated protein. The Journal of Biological Chemistry, 269, 32672-32677.
    10. Chen, I. T., Akamatus, M., Simth, M. L., Lung, F. D., Duba, D., Roller, P.
    P., Fornace Jr, A. J. and O’Connor, P. M., 1996. Characterization of
    p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction.
    Oncogene,12, 595-607.
    11. Cleaver, J. E., 1968. Defective repair replication in xeroderma pigmentosum.
    Nature, 80, 221-248.
    12. Elbashir, S. M., Lendeckel, W. and Tuschl, T., 2002. RNA interferen is
    mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188-200.
    13. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and
    Tuschl, T., 2001. Dupleses of 21-nucleotide RNAs mediate RNA interference in
    cultured mammalian cells. Nature, 411, 494-498.
    14. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello,
    C.C., 1998. Potent and sepecifice genetic interference by double-stranded RNA
    in Canorhabditis elegans. Nature, 391, 806-811.
    15. Friedberg, E. C., Walker, G. C., and Siede, W., 1995. DNA repair and
    mutagenesis. American Society for Microbiology Press, Washington, D. C.
    16. Funakoshi, M., Sasaki, T., Nishimoto, T. and Kobayashi, H., 2002. Budding
    yeast DSK2p is a polyubiquitin-binding protein that can interact with the
    proteasome. Proceedings of the National Academy of Science of the United
    States of America, 99, 745-750.
    17. Ganesan,A. K., Hunt, J. and Hanawalt, P. C., 1999. Expression and nucleotide
    excision repair of a UV-irradiated reporter gene in unirradiated human cell.
    Mutation Research, 433, 117-126.
    18. Gossen, M. and Bujard, H., 1992. Tight control of gene expression in
    mammalian cells by tetracycline-responsive promoters. Proceedings of the
    National Academy of Science of the United States of America, 89, 5547-5551.
    19. Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K.,
    Hoeijmarkers, J. H. J. and Hanaoka, F., 1999. Interaction of hHR23 with s5a.
    Molecular and Cell Biology, 16, 4852-4861.
    20. Hoeijmakers, J. H. J., 2001. Genome maintenance mechanisms for preventing
    cancer. Nature, 411, 366-374.
    21. Hildesheim, J. and Fornace Jr, A. J., 2002. Gadd45a:an elusive yet attractive
    candidate gene in pancreatic cancer. Clinical Cancer Research, 8, 2475-2479.
    22. Hofman, K. and Bacher, P., 1996. The UBA domain:a sequence motif present in
    multiple enzyme classes of the ubiquitylation pathway. Trends in Biochemical
    Sciences, 21 172-173.
    23. Hollander, M. C., Sheikh, M. S., Bulavin, D. V., Lundgren, K.,
    Augeri-Henmueller, L., Shehee, R., Molinaro, T. A., Kim, K. E., Tolosa, E.,
    Ashwell, J. D., Rosenberg, M. P., Zhan, Q., Fernandez-Salguero, P. M.,
    Morgan, W. F., Deng, C. X. and Fornace Jr, A. J., 1999. Genomic instability
    in Gadd45a-deficient mice. Nature Genetics, 23, 176-184.
    24. Hall, P. A., Kearsey, J. M., Coates, P. J., Norman, D. G., Warbrick, E. and
    Cox, L. S., 1995. Characterisation of the interaction between PCNA and
    Gadd45. Oncogene, 10, 2427-2433.
    25. Hammod, S. M., Bernstein, E., Beach, D. and Hannon, G. J., 2002. An RNA
    directed nuclease mediates post-transcriptional gene silencing in Drosophila
    cells. Nature, 404, 293-396.
    26. Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W.
    V., Plunkett, B. S., Vogelstein, B. and Fornace Jr, A. J., 1992. A mammalian
    cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in
    ataxia-telangiectasia. Cell, 71, 587-597.
    27. Kearsey, J. M., Coates, P. J., Prescott, A. R., Warbick, E. and Hall, P. A.,
    1995. Gadd45 is a nuclear cell cycle regulated protein which interacts with
    p21Cip1. Oncogene, 11, 1675-1683.
    28. Lewin, B., 2000. Gene VII. Oxford Univerdity Press, New York.
    29. Laat, W. L. de, Jaspers, N. G. J. and Hoeijmakers, J. H. J., 1999. Molecular
    mechanism of nucleotide excision repair. Gene & Development, 13, 768-785.
    30. Lindahl, T. and Wood, R. D., 1999. Quality Control by DNA Repair. Science,
    286, 1897-1905.
    31. Medura, K. and Prakash, S., 1999. Transcript levels of the Saccharomyes
    cerevisiae DNA repair gene RAD23 increase in response to UV light and in
    meiosis bat remain constant in the mitotic cell cycle. Nucleic Acids
    Research,18, 4737-4742.
    32. Muellar, J. P. and Smerdon, M. J., 1999. Rad23 is required for
    transcription-couple repair and efficient overall repair in Saccharomyes
    cerevisiae. Molecular and Cell Biology, 16, 2361-2368.
    33. Miao, F., Bouziane, M., Pammann, R., Masatani, C., Hanaoka, F., Pfeifer, G.
    and O’Connor, T. R., 2000. 3-Methladenine-DNA glycosylase(MPG protein)
    interacts with human RAD23 protein. The Journal of Biological Chemistry, 275,
    28433-28438.
    34. Mitchell, D. L., Jen, J. and Cleaver, J. E., 1992. Sequence specificity of
    cyclobutane pyrimidine dimmers in DNA treated with solar (ultraviolet B)
    radiation. Nucleic Acids Research, 20, 225-229.
    35. Masutani, C., Araki, M., Sugasawa, K., Spek, P. J. vander, Yamada, A.,
    Uchide, A., Maekawa, T., Bootsma, D., Heoijmakers, J. H. J. and Hanaoka, F.,
    1997. Identification and characterization of XPC-binding domain of hHR23B.
    Molecular and Cell Biology, 17, 6915-6923.
    36. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto,
    T., Takio, K., anaka, T. K., Spek, P. J. vander, Bootsma, D., Hoeijmakers, J.
    H. J. and Hanaoka, F., 1994. Purification and cloning of a nucleotide
    excision repair complex involving the xeroderma pigmentosum group C protein
    and a human homolog of yeast RAD23. The EMBO Journal, 8, 1831-1843.
    37. Ng, J. M., Vermeulen, W., Horst, G. T. vander, Bergink, S., Sugasawa, K.,
    Vrieling, H., Hoeijmakers, J. H., 2003. A novel regulation mechanism of DNA
    repair by damage-induced and RAD23-dependent stabilization of xeroderma
    pigmentosum group C protein. Genes and Development, 17, 1630-1645.
    38. Petit, C. and Sancer, A., 1999. Nucleotide excision repair:From E. coil to
    man. Biochimie, 81, 15-25.
    39. Pal-Bhadra, M., Bhadra, U. and Birchler, J. A., 1997. Cosuppression in
    Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes
    is Polycomb dependent. Cell, 90, 479-490.
    40. Pal-Bhadra, M., Bhadra, U. and Birchler, J. A., 2002. RNAi related mechanisms
    affect both transcriptional and posttranscriptional transgene silencing in
    Drosophila. Molecular Cell, 9, 315-327.
    41. Robbins, J. H., Kraemer, K. H., Lutzner, M. A., Festoff, B. W. and Coon, H.
    G., 1974. Xeroderma pigmentosum. An inherited disease with sun sensitivity,
    multiple cutaneous neoplasms and abnormal DNA repair. Annals of Internal
    Medicine, 80, 221-248.
    42. Shunqian, J., Lucia, M., Xiaocheng, Z., Tong, T., Yongmei, S., Shao, S.,
    Kimberly, L P., Baskaran, R., Min, W. and Qimin, Z., 2003. Gadd45a
    contributes to p53 stabilization in response to DNA damage. Oncogene, 22,
    8536-8540.
    43. Smith, M. L., Chen, I. T., Zhan, Q., Bae, I., Chen, C. Y., Gilmer, T. M.,
    Kastan, M. B., O’Connor, P. M. and Fornace Jr, A. J., 1994. Interaction of
    the p53-regulated protein Gadd45 with proliferating cell nuclear antigen.
    Science, 266, 1376-1380.
    44. Smith, M. L., Kontny, H. U., Zhan, Q., Sreenath, A., O’Connor, P. M. and
    Fornace Jr, A. J., 1996. Antisense GADD45 expression results in decreased DNA
    repair and sensitizes cells to UV-irradiation or cisplatin. Oncogene, 13,
    2255-2263.
    45. Smith, M. L., Ford, J. M., Hollander, M. C., Bortnick, R. A., Amundson, S.
    A., Seo, Y. R., Deng, C. X., Hanawalt, P. C. and Fornace Jr, A. J., 2000.
    P53-mediated DNA repair responses to UV radiation: studies of mouse cells
    lacking p53, p21, and/or gadd45 genes. Molecular and Cellular Biology, 20,
    3705–3714.
    46. Tran, H., Brunet, A., Grenier, J. M., Datta, S. R., Fornace Jr, A. J.,
    DiStefano, P. S., Chiang, L. W. and Greenberg, M. E., 2002. DNA repair
    pathway stimulated by the forkhead transcription factor FOXO3a through the
    Gadd45 protein. Science, 296, 530-534.
    47. Tabara, H., Sarkissian, M., Kelly, M. G., Fleenor, J., Gvishok, A., Timmons,
    L., Fire, A. and Mello, C. C., 1999. The rde-1 gene, RNA interference, and
    transposon silencing in C. elegans. Cell, 99, 123-132.
    48. Takebe, H., Miki, Y., Kozuka, T., Fujiwara, J. I., Tanaka, K., Sasaki, M. S.
    and Akiba, H., 1977. DNA repair characteristics and skin cancers of xeroderma
    pigmentosum patients in Japan. Cancer Research, 367, 490-495.
    49. Wilkinson, C. R. M., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace,
    M., Semple, C. and Gordon, C., 2001. Protein containing the UBA domain are
    able to bind to multi-ubiquitin chain. Nature Cell Biology, 3, 939-945.
    50. Winston, W. M., Molodowith, C. and Hunter,C. P., 2002. System RNAi in C.
    elegans requires the putative transmembrane protein. Science, 295, 2456-2459.
    51. Wood, R. D., 1996. DNA repair in eukaryotes. Annual Review of Biochemistry,
    65, 135-167.
    52. Yuichiro, S., Shigenori, I., Fumio, H. and Kaoru S., 2003. Xeroderma
    pigmentosum group C protein interacts physically and functionally with
    thymine
    DNA glycosylase. The EMBO Journal, 22, 164-173.
    53. Zhao, H., Jin, S., Antinore, M. J., Lung, F. D., Fan, F., Blanck, P., Roller,
    P., Fornace Jr, A. J. and Zhan, Q., 2000. Activation of the transcription
    factor Oct-1 in response to DNA damage. Cell Research, 258, 92-100.
    54. 蔡瑞和, 2002. 以微矩陣基因晶片探討細胞經紫外線照射後的基因表現. 成功大學醫工
    所.
    55. 賴允婷, 2002. 人類核甘酸切除修復因子hHR23A和hHR23B的蛋白質交互作用研究及對於
    蛋白質降解之調節. 成功大學分醫所.
    56. 黃聿忻, 2003. 人類之hHR23A和hHR23B蛋白質在DNA修復及蛋白質降解作用中之功能性研
    究. 成功大學分醫所.


    下載圖示 校內:立即公開
    校外:2004-08-30公開
    QR CODE