| 研究生: |
張志仲 Chang, Chih-Chung |
|---|---|
| 論文名稱: |
可降解及多孔性之適強度幾丁聚醣薄膜膠體對銅離子吸附的研究 Study of copper ions adsorption upon the biodegradable and porous chitosan film with a proper strength |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 幾丁聚醣 、電漿改質 、原子吸收光譜儀 、傅立葉轉換紅外線光譜儀 、X光光電子能譜儀 |
| 外文關鍵詞: | plasma modification, Fourier Transform Infrared Spectrometer, Atomic Absorption Spectrometry, chitosan, X-ray Photoelectron Spectroscopy |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣是天然的高分子聚合物,其分子結構具有胺基官能基,能與金屬離子產生鍵結而形成穩定的錯合物,適合用來去除重金屬廢液。本研究以未交聯與經0.25 wt%三聚磷酸鹽溶液交聯後的幾丁聚醣薄膜膠體做為研究的材料。首先,探討未交聯與交聯的幾丁聚醣薄膜膠體在機械、含水、溶解性質上的差異,接著,分析未交聯與交聯幾丁聚醣薄膜膠體在吸附銅離子前後變化的情形,最後,利用NH3和NH3/N2電漿改質未交聯與交聯幾丁聚醣薄膜膠體,並觀察對銅離子吸附量及表面成份元素變化的情形。實驗結果顯示:幾丁聚醣薄膜膠體交聯後,其機械性質會有所提升且在酸性溶液中的溶解率會降低。利用掃描式電子顯微鏡觀察出未交聯與交聯的薄膜膠體表面皆有孔洞的分佈,水分子會藉由孔洞擴散進入薄膜膠體內部,所以含水率高。使用能量散佈X光譜儀可以測得兩組薄膜膠體吸附銅離子後,有銅元素訊號產生。以原子吸收光譜儀可以得知交聯後的薄膜膠體對銅離子的吸附量並未因交聯而減少,對照溶解測試結果推測,在酸性溶液中,交聯的幾丁聚醣薄膜膠體比未交聯的溶解率低,所以對銅離子吸附量並沒有明顯地減少。以傅立葉轉換紅外線光譜儀和X光光電子能譜儀分析結果得知,銅離子會與幾丁聚醣分子上的胺基產生了鍵結而吸附,所以屬於化學性吸附。從原子吸收光譜儀和X光光電子能譜儀得知,NH3電漿改質未交聯薄膜膠體,其N/C比減少6.5 %,故對銅離子吸附量減少,而NH3/N2電漿改質未交聯薄膜膠體,其N/C比增加12 %,故對銅離子吸附量增加;若分別以NH3和NH3/N2電漿改質交聯薄膜膠體,其N/C比分別增加4.5 %和16.2 %,故對銅離子吸附量分別增加,因此推論藉由電漿改質所增加氮的含量為促進幾丁聚醣薄膜膠體銅離子吸附量的原因。
Chitosan is a nature polymer which can form stable complexes with metal ions by using the amine group of its molecular structure. Therefore, it is suitable to remove heavy metal-containing wastewater. In this study, two methods were employed to prepare two kinds of films which were non-cross-linked and cross-linked chitosan films by using 0.25 wt% tripolyphosphate solution. At first, the mechanical property, water absorption and solubility of non-cross-linked and cross-linked chitosan films were discussed. Then copper ion adsorption test were analyzed. At last, two kinds of films were modified by using ammonia and ammonia/nitrogen plasma. After that, the capability of copper ions adsorption and chemical bonding species on plasma-modified films were investigated. Experimental results demonstrated that the mechanical property of cross-linked chitosan film was improved and its solubility ratio in acid solution was decreased. Porous structure was uniform spread on the chitosan films detected by Scanning Electron Microscope (SEM), which resulted in high water absorption. The signal of copper was detected on copper ions adsorption of films by Energy Dispersive X-ray Spectrometer (EDS). From Atomic Absorption Spectrometry (AAS), the copper ions adsorption capacity of cross-linked chtiosan film was comparable to that of non-cross-linked chitosan film because cross-linked chitosan had low solubility ratio in acid solution. From Fourier Transform Infrared Spectrometer (FTIR) and X-ray Photoelectron Spectroscopy (XPS), copper ions formed chemical adsorption with amine group on chitosan films. From AAS and XPS, for non-cross-linked chitosan film, the N/C ratio decreased 6.5 % after ammonia plasma treatment, so the capability of copper ions adsorption was decreased. On the other hand, the N/C ratio increased 12 % after ammonia/nitrogen plasma treatment, so the capability of copper ions adsorption was increased. In respect of cross-linked chitosan film, the N/C ratio increased 4.5 % and 16.2 % respectively after ammonia and ammonia/nitrogen plasma treatment, so the capabilities of copper ions adsorption were increased. Therefore, the increase of nitrogen content on the plasma treated chitosan films resulted in the increased capabilities of copper ions adsorption.
1. 楊肇政,污染防治,全威圖書有限公司,Chap.1,pp 6-14,1991。
2. Friberg, L., Nordberg, G. F., Vouk, B.(1979) “Handbook on the Tocicology of Metal” , Elsevier, Amsterdam.
3. 徐薇如,幾丁聚醣/藻酸鈣生物高分子對重金屬吸附行為之研究,國立交通大學應用化學研究所碩士論文,pp 2-3,2000。
4. Y. Benito and M. L. Ruiz, “Reverse osmosis applied to metal finishing wastewater”, Desalination, Vol. 142, pp 229-234, 2002.
5. O. Souilah, D. E. Akretche and M. Amara, “Water reuse of an industrial effluent by means of electrodeionisation”, Desalination, Vol. 167, pp 49-54, 2004.
6. B. Biskup and B. Subotic, “Kinetic analysis of the exchange processes between sodium ions from zeolite A and cadmium, copper and nickel ions from solutions”, Separation and Purification Technology, Vol. 37, pp 17-31, 2004.
7. J. N. Lester, Heavy metals in wastewater and sludge treatment process, CRC Press, Chap. 4, pp 83-86, 1987.
8. M. Goyal, V. K. Rattan, D. Aggarwal and R. C. Bansal, “Removal of copper from aqueous solutions by adsorption on activated carbons”, Colloids and Surfaces, Vol. 190, pp 229-238, 2001.
9. Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, “Lead adsorption on carbon nanotubes”, Chemical Physics Letters, Vol. 357, pp 263-266, 2002.
10. A. Kapoor and T. Viraraghavan, “Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review”, Bioresource Technology, Vol. 53, pp 195-206, 1995.
11. O. Gyliene, R. Rekertas and M. Salkauskas ”Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells”, Water Research, Vol. 36, pp 4128-4136, 2002.
12. O. A. C. Monteiro Jr and C. Airoldi, “Some Thermodynamic Data on Copper–Chitin and Copper–Chitosan Biopolymer Interactions”, Journal of Colloid and Interface Science, Vol. 212, pp 212-219, 1999.
13. Y. Kawamura, M. Mitsuhashi, H. Yoshida and H. Tanibe, “Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin”, Industrial Engineering Chemical Research, Vol. 32, pp 386-391, 1993.
14. S. T. Lee, F. L. Mi, Y. J. Shen and S. S. Shyu, “Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin”, Polymer, Vol. 42, pp 1879-1892, 2001.
15. Y. Koyama and A. Taniguchi, “Cross-linking of chitosan for enhanced cupric ion adsorption”, Journal of Applied Polymer Science, Vol. 31, pp 1951-1954, 1986.
16. 侯孟新,多孔幾丁聚醣改質膠體對於不同重金屬離子之吸附研究,國立成功大學材料科學及工程學系,pp 31-46,2006。
17. C. Y. Hsieh, S. P. Tsai, M. H. Ho, D. M. Wang, C. E. Liu, C. H. Hsieh, H. C. Tseng and H. J. Hsieh, “ Analysis of freeze-gelation and cross-linking processes for prepare porous chitosan scaffolds”, Carbohydrate Polymers, Vol. 67, pp 124-132, 2007.
18. L. Jin and R. Bai, “Mechanisms of lead adsorption on chitosan/PVA hydrogel beads”, Langmuir, Vol. 18, pp 9765-9770, 2002.
19. S. Sun and A. Wang, “Adsorption kinetics of Cu(Ⅱ) ions using N,O-carboxymethyl- chitosan”, Journal of Hazardous Materials B, Vol. 131, pp 103-111, 2006.
20. L. Dambies, C. Guimon, S. Yiacoumi and E. Guibal, “Characterization of metal ion interactions with chitosan by photoelectron spectroscopy”, Colloids and Surfaces A, Vol. 177, pp 203-214, 2001.
21. M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P. Vottero and A. Alagui, “Contribution to the study of the complexation of copper by chitosan and oligomers”, Polymer, Vol. 43, pp 1267-1276, 2002.
22. S. B. Rejeb, M. Tatoulian, F. A. Khonsari, N. F. Durand, A. Martel, J. F. Lawrence, J. Amouroux and F. Le Goffic, “Functionalization of nitrocellulose membranes using ammonia plasma for the covalent attachment of antibodies for use in membrane-based immunoassays”, Analytica Chimica Acta, Vol. 376, pp 133-138, 1998.
23. M. Sira, D. Trunec, P. Stahel, V. Bursikova, Z. Navratil and J. Bursik, “Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge”, Journal of Physics D: Applied Physics, Vol. 38, pp 621-627, 2005.
24. C. Faur-Brasquet, Z. Reddad and K. Kadirvelu, “Modeling the adsorption of metal ions (Cu+2 , Ni+2 , Pb+2) onto ACCs using surface complexation models”, Applied Surface Science, Vol. 196, pp 356-365, 2002.
25. N. Chiron, R. Guilet and E. Deydier, “Adsorption of Cu and Pb onto grafted silica : isotherms and kinetic models”, Water Research, Vol. 37, pp 3079-3086, 2003.
26. 經濟部工業局工業污染防治技術計畫專案,2003。
27. 許漢平,以食鹽為造孔劑製備備吸附能力幾丁聚醣薄膜之應用,國立聯合大學化學工程學系碩士論文,pp 3-4,2006。
28. 陳美惠、莊淑惠、吳志律,幾丁聚醣的物化特性。食品工業月刊,Vol. 31,pp 1-6,1999。
29. 賴淑琪,「水產廢棄蝦、蟹外殼之高度利用」,食品工業,Vol. 11,pp 23,1979。
30. K. M. Rudall, “Chitin and its association with other molecules” Journal of Polymer Science Part C, Vol . 28, pp 83-102, 1969.
31. X. Wang, Y. Du and H. Liu, “Preparation, characterization and antimicrobial activity of chitosan-Zn complex”, Carbohydrate Polymer, Vol. 56, pp 21-26, 2004..
32. L. G. Filar and M. G. Wirick, “Bulk and solution properties of chitosan In: Proceed- ings of the 1st Int. Conf. on chitin/chitosan” Muzzarelli, R. A. A. and Pariser, E. R. (Eds): 169, 1978.
33. S. I. Aiba, “Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans”, International Journal of Biological Macromolecules, Vol. 14, pp 225-228, 1992.
34. X. Z. Shu and K. J. Zhu, “Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure”, International Journal of Pharmaceu- tics, Vol. 233, pp 217-255, 2002.
35. Z. X. Tang, J. Q. Qian and L. E. Shi, “Characterizations of immobilized neutral proteinase on chitosan nano-particles” , Process Biochemistry, Vol. 41, pp 1193-1197, 2006.
36. H. R. Lin, K. S. Chen, S. C. Chen, C. H. Lee, S. H. Chiou, T. L. Chang and T. H. Wu, “Attachment of stem cells on porous chitosan scaffold crosslinked by Na5P3O10” , Material Science and Engineering C, Vol. 27, pp 280-284, 2007.
37. Q. Yang, F. Dou, B. Liang and Q. Shen, “Studies of cross-linking reaction on chitosan fiber with glyoxal”, Carbohydrate Polymers, Vol. 59, pp 205-210, 2005.
38. W. S. Wan Ngah, C. S. Endud, and R. Mayanar, “Removal of copper (Ⅱ) ions from aqueous onto chitosan and cross-linked chitosan beads”, Reactive & Functional Polymers, Vol. 50, pp 181-190, 2002.
39. A. A. Atia, “Studies on the interaction of mecury(Ⅱ) and uranyl(Ⅱ) with modified chitosan resins”, Hydrometallurgy, Vol. 80, pp 13-22, 2005.
40. N. Sankararamakrishnan and R. Sanghi, “Preparation and characterization of a novel xanthated chitosan”, Carbohydrate Polymers, Vol. 66, pp 160-167, 2006.
41. 陳澄河,蝦蟹殼傳奇,科學發展月刊,Vol. 369,pp 62-67,2003.
42. 林怡伶,化學修飾雙性幾丁聚醣衍生物及其持水特性研究,國立交通大學材料科學與工程研究所碩士論文,pp 25-26,2005。
43. M. Hitoshi, R. Giuseppe, C. Tommasina, Y. Yoshiaki and U. Hiroshi, “Low-degree oxidized scleroglucan and its hydrogel”, International Journal of Biological Macromolecules, Vol. 28, pp 351-358, 2001.
44. C. K. Kuo and P. X. Ma, “Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties”, Biomaterials, Vol. 22, pp 511-521, 2001.
45. J. S. Park, J. W. Park and E. Ruckenstein, “Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels”, Polymer, Vol. 42, pp 4271-4280, 2001.
46. W. E. Hennink, S. J. De Jong, G. W. Bos, T. F. J. Veldhuis and C. F. van Nostrum, “Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical protein”, International Journal of Pharmaceutics, Vol. 277, pp 99-104, 2004.
47. 蕭奧,張有義,郭蘭生,膠體及界面化學入門,高立出版,pp 15-30,1997。
48. O. Gyliene, R. Rekertas and M. Salkauskas, “Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells”, Water Research, Vol.36, pp 4128-4136, 2002.
49. E. Guibal,.“Interactions of metal ions with chitosan-based sorbents: a review”, Separation and Puriification Technology, Vol. 38, pp 43-74, 2004.
50. B. F. I, Plasmas: laboratory and cosmic, Van Nostrand, 1966.
51. H. R. Griem and R. H. Lovberg, Plasma physics, Academic Press, NY, 1971.
52. Boenig H. V, Plasma Science and Technology, Cornell University Press, 1982.
53. S. M. Kuo, S. W. Tsa, L. H. Huang and Y. Y. Wang, “Plasma-modified nylon meshes as supports for cell cull culturing”, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, Vol. 25, pp 551-562. 1997.
54. I. H. Coopes and K. J. Gifkins, “Gas plasma treatment of polymer surfaces”, Journal of Macromolecular Science-Chemistry, A17, Vol. 2, pp 217-226, 1982.
55. H. Biederman and L. Martin, Plasma deposition treatment, and etbhing of polymers, by Axademic Press, Chap. 4, 1990.
56. N. Inagaki, Plasma surface modification and plasma polymerization, by Technomic Publishing Company, Chap. 3, 1996.
57. M. Suzuki, A. Kishida and Y. Iwata, “Graft copolymerization of acrylamide onto polyethylene surface pretreated with a glow discharge”, Macromolecules, Vol. 19 1986, pp 1804-1808, 1986.
58. J. Chen, Y. C. Nho and J. S. Park, “Grafting polymerization of acrylic acid on to preirradiated polypropylene fabric”, Radiation Physics and Chemistry, Vol. 52, pp 201-206, 1998.
59. I. F. Osipenko and V. I. Martionovicz., “Grafting of the Acrylic on poly(ethylene Terephthalate)”, Journal of Applied Polymer Science, Vol. 39, pp 935-942, 1990.
60. H. Kubota and Y. ogiwara, “Effect of Metallic ions in photo-induced graft copolymerization onto cellulose”, Journal of Applied Polymer Science, Vol. 16, pp. 337-344, 1972.
61. F. Garbassi, M. Morra, and E. Occhiello, Polymer surfaces from physics to technology, John Wiley & Sons Ltd, 1994.
62. 邱承美,陶金華,儀器分析原理,科文出版社出版,1994。
63. 顏棋鑫,幾丁聚醣顆粒吸附有害重金屬之探討,朝陽科技大學應用化學系碩士論文,pp 13-14,2002。
64. 儀器總覽9,環境及安全衛生檢測儀器, 行政院國家科學委員會精密儀器發展中心出版,pp 67-69,1999。
65. K. Kurita, Y. Koyama and A. Taniguchi, “Chitin and evaluation of the products as adsorbents for cupric ion”, Journal of Applied Polymer Science, Vol. 31, pp 1169-1176, 1986.
66. I. F. Amaral, P. L. Granja, and M. A. Barbosa, “Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study”, Journal of Biomaterial Science Polymer Edition, Vol. 16, pp 1575-1593, 2005.
67. F. Arefi-Khonsari, J. Kurdi, M. Tatoulian and J. Amouroux, “On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals”, Surface and Coating Technology, Vol. 142, pp 437-448, 2002.
68. W. D. Yang, P. N. Wang, Z. P. Liu, L. Mi, S. C. Chen and F. M. Li, “Enhanced dissocition and ionization of N2 in a pulsed discharge by adding NH3 or CH4 into nitrogen gas”, Journal of Physics D: Applied Physics, Vol. 33, pp 3223-3227, 2000.
69. C. S. Bournet, S. Turgeon, D. Mantovani and G. Laroche, “A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications”, Journal of Physics D: Applied Physics. Vol. 39, pp 3461-3469, 2006.