簡易檢索 / 詳目顯示

研究生: 陳珮瑄
Chen, Pei-Hsuan
論文名稱: 市售食品中高氯酸鹽、硝酸鹽及硫氰酸鹽含量調查與暴露風險評估研究
The investigation on perchlorate, nitrate and thiocyanate levels in foods and exposure risk assessment
指導教授: 李俊璋
Lee, Ching-Chang
共同指導教授: 陳秀玲
Chen, Hsiu-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 152
中文關鍵詞: 高氯酸鹽硝酸鹽硫氰酸鹽甲狀腺干擾物質攝食暴露風險評估
外文關鍵詞: Perchlorate, Nitrate, Thiocyanate, Thyroid disrupting chemical, Dietary exposure assessment
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高氯酸鹽、硝酸鹽及硫氰酸鹽為近年受關注之甲狀腺干擾物質,常應用於農業、工業及軍事中,可透過相關產業的製造、使用和廢棄過程釋放而污染環境介質中之土壤及水體,進而進入食物鏈,人體可能經由吸入、皮膚接觸及食入暴露高氯酸鹽、硝酸鹽及硫氰酸鹽,其中飲食攝取為主要暴露途徑。暴露過量高氯酸鹽、硝酸鹽及硫氰酸鹽將可干擾甲狀腺細胞之鈉碘轉運體對碘之吸收,使甲狀腺荷爾蒙分泌不足。此外,有研究指出高氯酸鹽、硝酸鹽及硫氰酸鹽對甲狀腺之毒性具有不同的權重。然而,目前並無研究同時監測食品中高氯酸鹽、硝酸鹽及硫氰酸鹽,亦極少關注其整合健康風險。本研究之目的為綜合上述三種甲狀腺干擾物質,高氯酸鹽、硝酸鹽及硫氰酸鹽之調查結果進行國人經飲食暴露高氯酸鹽、硝酸鹽及硫氰酸鹽之整合風險評估。本研究使用衛生福利部食品藥物管理署「食品中高氯酸鹽之含量調查及風險評估」計畫之11大類食品309件剩餘食物樣本,進行硝酸鹽及硫氰酸鹽之檢測。樣本經前處理(萃取、淨化等流程)後以高效能液相層析串聯質譜儀進行分析。在暴露劑量評估上,綜合食品中硝酸鹽和硫氰酸鹽之分析結果以及前述計畫之高氯酸鹽濃度結果數據,進行國人經由飲食暴露甲狀腺干擾物質之整合風險評估,並以第95百分位危害指標(HI)做為風險判定之依據。食物樣本中高氯酸鹽、硝酸鹽及硫氰酸鹽的檢出率分別為65%、98%及58%,樣本中高氯酸鹽、硝酸鹽及硫氰酸鹽濃度範圍分別為ND-3064 μg/kg ww 、ND-4742 mg/kg ww及ND-170 mg/kg ww。各大類食品中高氯酸鹽平均濃度以蔬菜類最高(214 μg/kg ww),其次為其他類(131 μg/kg ww)及水果類(27.9 μg/kg ww);至於食品中硝酸鹽平均濃度以蔬菜類最高(867 mg/kg ww),其次為其他類(83.1 mg/kg ww)及家畜肉類(31.1 mg/kg ww),單一食品以有機空心菜(4742 mg/kg ww)最高;而硫氰酸鹽平均濃度以乳品類最高(22.5 mg/kg ww),嬰幼兒食品(9.30 mg/kg ww)及家禽肉類(3.79 mg/kg ww)次之。國人經飲食暴露高氯酸鹽之推估結果,各年齡層及性別之高氯酸鹽第95百分位暴露劑量範圍為1.8-5.0 μg/kg bw/day,以65歲以上女性族群(5.0 μg/kg bw/day)最高,其中以蔬菜類為主要貢獻來源(94%),各年齡層第95百分位暴露劑量均高於高氯酸鹽每日耐受量(TDI)0.3 μg/kg bw/day,且HI介於6.1-16.7之間。國人經飲食暴露硝酸鹽之推估結果,各年齡層及性別之硝酸鹽第95百分位暴露劑量範圍為8.1-23.1 mg/kg bw/day,以65歲以上男性族群(23.1 mg/kg bw/day)最高,其中以蔬菜類為主要貢獻來源(99%),各年齡層第95百分位暴露劑量均高於硝酸鹽最小風險值(MRL)4 mg/kg bw/day,且HI介於2.0-5.8之間。國人經飲食暴露硫氰酸鹽之推估結果,各年齡層及性別之硫氰酸鹽第95百分位暴露劑量範圍為0.05-0.41 mg/kg bw/day,以0-3歲全體族群(0.41 mg/kg bw/day)最高,其中以嬰幼兒食品為主要貢獻來源(73%),各年齡層第95百分位暴露劑量均高於硫氰酸鹽臨時每日最高耐受量(PMTDI)0.011 mg/kg bw/day,且HI介於4.5-37.4之間。最後進行國人經食物途徑同時暴露高氯酸鹽、硝酸鹽及硫氰酸鹽之整合風險評估,根據三者各自抑制碘離子吸收之效力計算高氯酸鹽毒性當量濃度(PEC),各年齡層及性別之PEC第95百分位暴露劑量範圍為37.6-103.3 μg/kg bw/day,以65歲以上男性族群(103.3 μg/kg bw/day)最高,其中以蔬菜類為主要貢獻來源(96%),各年齡層第95百分位暴露劑量均高於高氯酸鹽臨時每日最高耐受量(PMTDI)10 μg/kg bw/day,HI介於3.8-10.3之間,所有族群之HI均高於1,顯示目前國人經飲食同時攝入高氯酸鹽、硝酸鹽及硫氰酸鹽可能造成甲狀腺健康上的危害。在以本研究所得之食品中高氯酸鹽、硝酸鹽及硫氰酸鹽濃度、各年齡層各類食物國人攝食量及體重資料(國家攝食資料庫提供)、食入途徑之吸收分率皆為1之情境下,高氯酸鹽、硝酸鹽及硫氰酸鹽之整合危害風險(HI)高於參考限值,建議政府針對暴露貢獻量最高的蔬菜類及嬰幼兒食品持續進行監測。

    Perchlorate, nitrate and thiocyanate were identified as thyroid-disrupting chemicals and the public concerns were raised. They are widely used in agriculture, industry and military and may contaminate the soil and water of environmental medium through manufacturing, using and discarding process, and then may enter the food chain. Dietary ingestion is the main exposure route for human. Exposure to perchlorate, nitrate and thiocyanate could interfere with iodine uptake of sodium-iodide symporter (NIS) and resulted in insufficient secretion of thyroid hormones. In addition, research reported that perchlorate, nitrate and thiocyanate showed different toxic weighting on the thyroid gland. However, few studies are conducted to monitor perchlorate, nitrate and thiocyanate simultaneously, nor assess the integrated risk of concurrent exposure to perchlorate, nitrate and thiocyanate. The objective of the present study is to integrate the investigation results of perchlorate, nitrate and thiocyanate in foods and assess integrated exposure risk. 309 food samples of eleven categories from the project, “Investigation on background levels and risk assessment of perchlorate in foods” were used to measure the levels of nitrate and thiocyanate. After extraction and cleanup, the concentrations of nitrate and thiocyanate in food were analyzed by high-performance liquid chromatograph coupled with tandem mass spectrometry. Finally, the dietary exposure risk assessment of perchlorate, nitrate and thiocyanate were conducted for the general population with different age and sex groups. Concentrations of perchlorate, nitrate and thiocyanate in all food stuffs ranged from ND-3064 μg/kg ww, ND-4742 mg/kg ww and ND-170 mg/kg ww, respectively. The highest level of perchlorate was found in vegetables (214 μg/kg ww), followed by other foods (131 μg/kg ww) and fruits (27.9 μg/kg ww). The highest level of nitrate was found in vegetables (867 mg/kg ww), followed by other foods (83.1 mg/kg ww) and livestock (31.1 mg/kg ww). Dairy products had the highest level of thiocyanate (22.5 mg/kg ww), followed by baby food (9.30 mg/kg ww) and poultry (3.79 mg/kg ww). In general population, the P95 ADDs for perchlorate, nitrate and thiocyanate in all age-sex groups were ranged from 1.8-5.0 μg/kg bw/day, 8.1-23.1 mg/kg bw/day and 0.05-0.41 mg/kg bw/day, respectively. The highest P95 ADD of perchlorate, nitrate and thiocyanate was found in the over 65 years old females, over 65 years old males and 0-3 years old infants, respectively, with the major contributors of vegetables (94% and 99% contributed from perchlorate and nitrate) and baby food (74% contributed from thiocyanate). Finally, the perchlorate equivalent concentration (PEC) based on the relative potencies of perchlorate, nitrate and thiocyanate on the inhibition of iodide uptake by NIS was calculated to conduct the comprehensive dietary exposure risk assessment of perchlorate, nitrate and thiocyanate. In general population, the P95 ADDs for PEC in all age-sex groups were ranged from 37.6-103.3 μg/kg bw/day. The highest P95 ADD of PEC was found in the over 65 years old males, and the major risk was contributed from vegetable intake (96%). The P95 HI of PEC in all age and sex groups were higher than 1 that indicated the dietary exposures to perchlorate, nitrate and thiocyanate in Taiwanese were likely to cause adverse health effects on thyroid function. The integrated risk for dietary exposures to perchlorate, nitrate and thiocyanate in Taiwanese were higher than reference limit. We recommended that the major contribution sources such as vegetables and baby food should be continuously monitored.

    表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1. 研究背景 1 1-2. 研究目的 2 第二章 文獻回顧 3 2-1. 高氯酸鹽、硝酸鹽及硫氰酸鹽之物化特性、來源與用途 3 2-1-1. 高氯酸鹽之物化特性、來源與用途 3 2-1-2. 硝酸鹽之物化特性、來源與用途 4 2-1-3. 硫氰酸鹽之物化特性、來源與用途 5 2-2. 高氯酸鹽、硝酸鹽及硫氰酸鹽代謝與毒理特性 6 2-2-1. 代謝機轉 6 2-2-2. 毒理特性 7 2-3. 高氯酸鹽、硝酸鹽及硫氰酸鹽參考劑量 9 2-3-1. 高氯酸鹽參考劑量 9 2-3-2. 硝酸鹽參考劑量 10 2-3-3. 硫氰酸鹽參考劑量 10 2-4. 高氯酸鹽、硝酸鹽及硫氰酸鹽抑制碘攝取的相對效力 11 2-5. 各國食品中高氯酸鹽、硝酸鹽及硫氰酸鹽背景值調查 12 2-5-1. 食品中高氯酸鹽背景含量 12 2-5-2. 食品中硝酸鹽背景含量 14 2-5-3. 食品中硫氰酸鹽背景含量 15 2-6. 高氯酸鹽、硝酸鹽及硫氰酸鹽各國管制規範 16 2-6-1. 國內規範 16 2-6-2. 國外規範 17 2-7. 高氯酸鹽、硝酸鹽及硫氰酸鹽之健康風險評估 18 2-7-1. 高氯酸鹽健康風險評估 18 2-7-2. 硝酸鹽健康風險評估 20 2-7-3. 硫氰酸鹽健康風險評估 22 第三章 材料與方法 23 3-1. 研究架構 23 3-2. 食物樣本選取 23 3-3. 食物樣本保存 24 3-4. 茶湯高氯酸鹽溶出試驗 24 3-5. 食品中硝酸鹽及硫氰酸鹽之檢測方法 25 3-5-1. 藥品及試劑 25 3-5-2. 標準品 25 3-5-3. 食物樣本前處理標準流程 26 3-5-4. 儀器分析 28 3-6. 檢量線之建立與查核 28 3-7. 樣本分析過程各項管制指標查核制度 29 3-8. 食品中含高氯酸鹽、硝酸鹽及硫氰酸鹽之國人飲食暴露風險評估 32 3-8-1. 暴露劑量推估 32 3-8-2. 高氯酸鹽毒性當量濃度 33 3-8-3. 參考劑量 33 3-8-4. 蒙地卡羅模擬法 34 3-8-5. 非致癌風險特徵描述 34 第四章 結果與討論 35 4-1. 樣本分析之各項管制指標查核執行結果 35 4-2. 食品中高氯酸鹽、硝酸鹽及硫氰酸鹽含量分析結果與來源探討 36 4-2-1. 各食品類別中高氯酸鹽、硝酸鹽及硫氰酸鹽含量分析結果 37 4-2-2. 茶葉中高氯酸鹽含量之影響因子探討 47 4-2-3. 來源探討與茶湯試驗結果 48 4-3.國人經由飲食攝入高氯酸鹽、硝酸鹽及硫氰酸鹽之健康風險評估 49 4-3-1. 國人各年齡層每日食物攝取量與體重分布情形 49 4-3-2. 國人各年齡層經飲食暴露高氯酸鹽、硝酸鹽及硫氰酸鹽之平均每日暴露劑量 49 4-3-3. 國人各年齡層經飲食暴露高氯酸鹽、硝酸鹽及硫氰酸鹽之風險不確定性推估 54 4-3-4. 國人高氯酸鹽、硝酸鹽及硫氰酸鹽攝食風險之敏感性分析 58 第五章 結論與建議 61 5-1. 結論 61 5-2. 建議 63 5-2-1. 給消費者之建議 63 5-2-2. 給生產者之建議 64 5-2-3. 給管理者之建議 65 研究限制 67 參考文獻 68

    Abt E, Spungen J, Pouillot R, Gamalo-Siebers M, Wirtz M. 2018. Update on dietary intake of perchlorate and iodine from us food and drug administration’s total diet study: 2008–2012. Journal of Exposure Science and Environmental Epidemiology 28:21.
    Aires A, Carvalho R, Rosa EA, Saavedra MJ. 2013. Effects of agriculture production systems on nitrate and nitrite accumulation on baby‐leaf salads. Food science & nutrition 1:3-7.
    Alexander J, Benford D, Cockburn A, Cravedi J, Dogliotti E, Di Domenico A, et al. 2008. Opinion of the scientific panel on contaminants in the food chain on a request from the european commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J 689:1-79.
    Alimentarius C. 1991. Guidelines for the preservation of raw milk by use of the lactoperoxidase system. CAC/GL:13-1991.
    Ayangade S, Oyelola O, Oke O. 1982. A preliminary study of amniotic and serum thiosulphate levels in cassava-eating women. Nutrition Reports International (USA) 26:73-76.
    Banerjee KK, Marimuthu P, Bhattacharyya P, Chatterjee M. 1997. Effect of thiocyanate ingestion through milk on thyroid hormone homeostasis in women. Br J Nutr 78:679-681.
    Bosch H, Rosenfield A, Huston R, Shipman H, Woodward F. 1950. Methemoglobinemia and minnesota well supplies. Journal‐American Water Works Association 42:161-170.
    Bouvard V, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, et al. 2015. Carcinogenicity of consumption of red and processed meat. The Lancet Oncology 16:1599-1600.
    Brandhuber P, Clark S, Morley K. 2009. A review of perchlorate occurrence in public drinking water systems. American Water Works Association Journal 101:63.
    Cavaiuolo M, Ferrante A. 2014. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 6:1519-1538.
    Chain EPoCitF. 2014. Scientific opinion on the risks to public health related to the presence of perchlorate in food, in particular fruits and vegetables. EFSA Journal 12:3869.
    Clewell RA, Merrill EA, Yu KO, Mahle DA, Sterner TR, Fisher JW, et al. 2003a. Predicting neonatal perchlorate dose and inhibition of iodide uptake in the rat during lactation using physiologically-based pharmacokinetic modeling. Toxicol Sci 74:416-436.
    Clewell RA, Merrill EA, Yu KO, Mahle DA, Sterner TR, Mattie DR, et al. 2003b. Predicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: A physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat. Toxicol Sci 73:235-255.
    Council NR. 2005. Health implications of perchlorate ingestion:National Academies Press.
    Dahlberg P-A, Bergmark A, Björck L, Bruce Å, Hambraeus L, Claesson O. 1984. Intake of thiocyanate by way of milk and its possible effect on thyroid function. The American journal of clinical nutrition 39:416-420.
    Dahlberg P-A, Bergmark A, Eltom M, Björck L, Claesson O. 1985. Effect of thiocyanate levels in milk on thyroid function in iodine deficient subjects. The American journal of clinical nutrition 41:1010-1014.
    Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. 2002. Global assessment of the state-of-the-science of endocrine disruptors. Geneva: World Health Organization:11-32.
    Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, et al. 2005. The origin of naturally occurring perchlorate: The role of atmospheric processes. Environ Sci Technol 39:1569-1575.
    Dasgupta PK, Dyke JV, Kirk AB, Jackson WA. 2006. Perchlorate in the united states. Analysis of relative source contributions to the food chain. Environ Sci Technol 40:6608-6614.
    De Groef B, Decallonne BR, Van der Geyten S, Darras VM, Bouillon R. 2006. Perchlorate versus other environmental sodium/iodide symporter inhibitors: Potential thyroid-related health effects. European Journal of Endocrinology 155:17-25.
    Di Bernardo J, Iosco C, Rhoden KJ. 2011. Intracellular anion fluorescence assay for sodium/iodide symporter substrates. Anal Biochem 415:32-38.
    Directive C. 1995. 95/2/ec of 20 february 1995 on food additives other than colours and sweeteners. Official Journal L 61:3.
    Duncan PB, Morrison RD, Vavricka E. 2005. Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environmental Forensics 6:205-215.
    EFSA EFSA. 2008. Nitrate in vegetables ‐ scientific opinion of the panel on contaminants in the food chain. EFSA Journal 6.
    Ellis G, Adatia I, Yazdanpanah M, Makela SK. 1998. Nitrite and nitrate analyses: A clinical biochemistry perspective. Clin Biochem 31:195-220.
    EPA US. 2014. Endocrine disruptor screening program. Final second list of chemicals for tier 1 screening.
    Erickson BE. 2018. Endocrine disruptor assays go fast track. Chem Eng News 96:22-28.
    EuropeanCommission. 2011. Regulation (eu) no 1258/2011 of 2 december 2011 amending regulation (ec) no. 1881/2006 as regards maximum levels for nitrates in foodstuffs. Off J Eur Union L 320:15-17.
    EuropeanCommission. 2015. Statement as regards the presence of perchlorate in food endorsed by the standing committee on plants, animals, food and feed on 10 march 2015, updated on 23 june 2015.
    FAO. Lactoperoxidase system. Available: http://www.fao.org/ag/againfo/themes/documents/lps/dairy/mpv/lactoperoxidase/faqanswer.htm [accessed 7/29 2019].
    Gan Z, Pi L, Li Y, Hu W, Su S, Qin X, et al. 2015. Occurrence and exposure evaluation of perchlorate in indoor dust and diverse food from chengdu, china. Sci Total Environ 536:288-294.
    Gapper LW, Fong BY, Otter DE, Indyk HE, Woollard DC. 2004. Determination of nitrite and nitrate in dairy products by ion exchange lc with spectrophotometric detection. International Dairy Journal 14:881-887.
    Ghassabian A, Trasande L. 2018. Disruption in thyroid signaling pathway: A mechanism for the effect of endocrine-disrupting chemicals on child neurodevelopment. Front Endocrinol (Lausanne) 9:204.
    Green WL. 1978. Mechanisms of action of antithyroid compounds. The Thyroid Werner SC, Ingbar SH, Eds Harper and Row, New York:77-78.
    Greer MA, STOTT AK, MILNE KA. 1966. Effect of thiocyanate, perchlorate and other anions on thyroidal iodine metabolism. Endocrinology 79:237-247.
    Greer MA, Goodman G, Pleus RC, Greer SE. 2002. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 110:927.
    Greiner P, McLellan C, Bennett D, Ewing A. 2008. Occurrence of perchlorate in sodium hypochlorite. Journal‐American Water Works Association 100:68-74.
    Group IW. 2010. Iarc monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer 94.
    Guillette Jr LJ, Edwards TM. 2005. Is nitrate an ecologically relevant endocrine disruptor in vertebrates? Integr Comp Biol 45:19-27.
    Gupta S, Gupta R, Seth A, Gupta A, Bassin J, GUPTA A. 2000. Methaemoglobinaemia in areas with high nitrate concentration in drinking water. Natl Med J India 13:58-60.
    Han H, Kwon H. 2009. Estimated dietary intake of thiocyanate from brassicaceae family in korean diet. Journal of Toxicology and Environmental Health, Part A 72:1380-1387.
    Hartman PE. 1983. Putative mutagens and carcinogens in foods. I. Nitrate/nitrite ingestion and gastric cancer mortality. Environ Mol Mutagen 5:111-121.
    Headquarters F. 2005. Benefits and potential risks of the lactoperoxidase system of raw milk preservation.
    Her N, Kim J, Yoon Y. 2010. Perchlorate in dairy milk and milk-based powdered infant formula in south korea. Chemosphere 81:732-737.
    Janzowski C, Eisenbrand G. 3. Aspects to be considered for risk assessment concer-ning endogenously formed n-nitroso-compounds. In: Proceedings of the Proceedings of the International Workshop on Health Aspects of Nitrates and its Metabolites (Particularly Nitrite), 1995, 313-330.
    Jimidar M, Hartmann C, Cousement N, Massart D. 1995. Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection. J Chromatogr A 706:479-492.
    Joint F, Additives WECoF, Organization WH. 2011. Safety evaluation of certain contaminants in food: Prepared by the seventy-second meeting of the joint fa.
    Juberg DR, Gehen SC, Coady KK, LeBaron MJ, Kramer VJ, Lu H, et al. 2013. Chlorpyrifos: Weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid pathways. Regul Toxicol Pharmacol 66:249-263.
    Jugan M-L, Levi Y, Blondeau J-P. 2010. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol 79:939-947.
    Kahn HD, Stralka K. 2009. Estimated daily average per capita water ingestion by child and adult age categories based on usda's 1994–1996 and 1998 continuing survey of food intakes by individuals. Journal of Exposure Science and Environmental Epidemiology 19:396.
    Learmonth C, Carvalho A. 2015. Acute and chronic toxicity of nitrate to early life stages of zebrafish--setting nitrate safety levels for zebrafish rearing. Zebrafish 12:305.
    Lee J-W, Oh S-H, Oh J-E. 2012. Monitoring of perchlorate in diverse foods and its estimated dietary exposure for korea populations. J Hazard Mater 243:52-58.
    Lopez-Ruiz B. 2000. Advances in the determination of inorganic anions by ion chromatography. J Chromatogr A 881:607-627.
    Lundberg JO, Weitzberg E, Gladwin MT. 2008. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nature reviews Drug discovery 7:156.
    Maffini MV, Trasande L, Neltner TG. 2016. Perchlorate and diet: Human exposures, risks, and mitigation strategies. Current environmental health reports 3:107-117.
    Maloof F, Soodak M. 1959. The inhibition of the metabolism of thiocyanate in the thyroid of the rat. Endocrinology 65:106-113.
    Medani AMM, Elnour AA, Saeed AM. 2011. Endemic goitre in the sudan despite long-standing programmes for the control of iodine deficiency disorders. Bull World Health Organ 89:121-126.
    Merrill EA, Clewell RA, Gearhart JM, Robinson PJ, Sterner TR, Yu KO, et al. 2003. Pbpk predictions of perchlorate distribution and its effect on thyroid uptake of radioiodide in the male rat. Toxicol Sci 73:256-269.
    Mesa JC, Armendáriz CR, de la Torre AH. 2003. Nitrate intake from drinking water on tenerife island (spain). Sci Total Environ 302:85-92.
    Moorcroft MJ, Davis J, Compton RG. 2001. Detection and determination of nitrate and nitrite: A review. Talanta 54:785-803.
    Mortada WI, Shokeir AA. 2018. Does nitrite and nitrate levels in drinking water impact the health of people in dakahlia governorate, egypt? Environmental Science and Pollution Research:1-11.
    Motzer WE. 2001. Perchlorate: Problems, detection, and solutions. Environmental Forensics 2:301-311.
    Murray CW, Egan SK, Kim H, Beru N, Bolger PM. 2008. Us food and drug administration's total diet study: Dietary intake of perchlorate and iodine. Journal of Exposure Science and Environmental Epidemiology 18:571.
    Narkowicz S, Jaszczak E, Polkowska Z, Kielbratowska B, Kotlowska A, Namiesnik J. 2018. Determination of thiocyanate as a biomarker of tobacco smoke constituents in selected biological materials of human origin. Biomed Chromatogr 32.
    Niemann RA, Anderson DL. 2008. Determination of iodide and thiocyanate in powdered milk and infant formula by on-line enrichment ion chromatography with photodiode array detection. J Chromatogr A 1200:193-197.
    Onyesom I, Okoh P. 2006. Quantitative analysis of nitrate and nitrite contents in vegetables commonly consumed in delta state, nigeria. Br J Nutr 96:902-905.
    Pihlanto A, Korhonen H. 2003. Bioactive peptides and proteins. Adv Food Nutr Res 47:175-276.
    Poulsen R, Cedergreen N, Hayes T, Hansen M. 2018. Nitrate: An environmental endocrine disruptor? A review of evidence and research needs. Environ Sci Technol 52:3869-3887.
    Quijano L, Yusà V, Font G, McAllister C, Torres C, Pardo O. 2017. Risk assessment and monitoring programme of nitrates through vegetables in the region of valencia (spain). Food Chem Toxicol 100:42-49.
    Quinones O, Oh JE, Vanderford B, Kim JH, Cho J, Snyder SA. 2007. Perchlorate assessment of the nakdong and yeongsan watersheds, republic of korea. Environ Toxicol Chem 26:1349-1354.
    Rehman HU. 2001. Evidence-based case review: Methemoglobinemia. West J Med 175:193.
    Rezaei H, Jafari A, Kamarehie B, Fakhri Y, Ghaderpoury A, Karami MA, et al. 2018. Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the sanandaj, kurdistan county, iran. Human and Ecological Risk Assessment: An International Journal:1-9.
    RISCH HA, JAIN M, CHOI NW, FODOR JG, PFEIFFER CJ, HOWE GR, et al. 1985. Dietary factors and the incidence of cancer of the stomach. Am J Epidemiol 122:947-959.
    Sadler R, Maetam B, Edokpolo B, Connell D, Yu J, Stewart D, et al. 2016. Health risk assessment for exposure to nitrate in drinking water from village wells in semarang, indonesia. Environmental Pollution 216:738-745.
    Sanchez C, Blount B, Valentin-Blasini L, Krieger R. 2007. Perchlorate, thiocyanate, and nitrate in edible cole crops (brassica sp.) produced in the lower colorado river region. Bull Environ Contam Toxicol 79:655-659.
    Santamaria P. 2006. Nitrate in vegetables: Toxicity, content, intake and ec regulation. J Sci Food Agric 86:10-17.
    Scherer G. 2006. Carboxyhemoglobin and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke. Exp Toxicol Pathol 58:101-124.
    Schulz V. 1984. Clinical pharmacokinetics of nitroprusside, cyanide, thiosulphate and thiocyanate. Clin Pharmacokinet 9:239-251.
    Schumacher JC. 1960. Perchlorates: Their properties, manufacture, and uses:Reinhold Publishing Corporation.
    Simeonova FP, Fishbein L, Organization WH. 2004. Hydrogen cyanide and cyanides: Human health aspects.
    Steinmaus CM. 2016. Perchlorate in water supplies: Sources, exposures, and health effects. Current environmental health reports 3:136-143.
    Stetson SJ, Wanty RB, Helsel DR, Kalkhoff SJ, Macalady DL. 2006. Stability of low levels of perchlorate in drinking water and natural water samples. Anal Chim Acta 567:108-113.
    Tonacchera M, Pinchera A, Dimida A, Ferrarini E, Agretti P, Vitti P, et al. 2004. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid 14:1012-1019.
    Trasande L, Shaffer RM, Sathyanarayana S, HEALTH COE. 2018. Food additives and child health. Pediatrics 142.
    Urbansky ET. 2000. Perchlorate in the environment:Springer.
    Urbansky ET. 2002. Perchlorate as an environmental contaminant. Environmental Science and Pollution Research 9:187-192.
    Urbansky ET, Brown SK. 2003. Perchlorate retention and mobility in soils. J Environ Monit 5:455-462.
    USEPA. 1998. Announcement of the drinking water contaminant candidate list. United states environmental protection agency. Fed Regist 63.
    Vaughn SF, Berhow MA. 2005. Glucosinolate hydrolysis products from various plant sources: Ph effects, isolation, and purification. Industrial Crops and Products 21:193-202.
    Voogt W, Jackson WA. 2010. Perchlorate, nitrate, and iodine uptake and distribution in lettuce (lactuca sativa l.) and potential impact on background levels in humans. J Agric Food Chem 58:12192-12198.
    Walker R. 1990. Nitrates, nitrites and n‐nitrosocompounds: A review of the occurrence in food and diet and the toxicological implications. Food Addit Contam 7:717-768.
    Walker R. 1996. The metabolism of dietary nitrites and nitrates.Portland Press Limited.
    Walton G. 1951. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water.American Public Health Association.
    Wang M, Chai L, Zhao H, Wu M, Wang H. 2015. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in bufo gargarizans larvae. Chemosphere 139:402-409.
    Wang Z, Forsyth D, Lau BP-Y, Pelletier L, Bronson R, Gaertner D. 2009. Estimated dietary exposure of canadians to perchlorate through the consumption of fruits and vegetables available in ottawa markets. J Agric Food Chem 57:9250-9255.
    WHO. 2016. Perchlorate in drinking-water. Background document for development of who guidelines for drinking-water quality. Who/sde/fwc/16.46.
    Wolff J. 1998. Perchlorate and the thyroid gland. Pharmacol Rev 50:89-106.
    Wyngaarden JB, STANBURY JB, RAPP B. 1953. The effects of iodide, perchlorate, thiocyanate, and nitrate administration upon theiodide concentrating mechanismof the rat thyroid. Endocrinology 52:568-574.
    Yang C-Y, Wu D-C, Chang C-C. 2007. Nitrate in drinking water and risk of death from colon cancer in taiwan. Environ Int 33:649-653.
    Yeh TS, Liao SF, Kuo CY, Hwang WI. 2013. Investigation of the nitrate and nitrite contents in milk and milk powder in taiwan. Journal of food and drug analysis.
    Yong L, Zhang L, Wang Y, Yang D, Liu Z, Wang T, et al. 2017. Liquid milk exposure and risk assessment of thiocyanate in chinese populations. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] 51:332-335.
    Yong L, Zhang L, Wang YBN, Yang DJ, Liu ZP, Wang T, et al. 2017. Liquid milk exposure and risk assessment of thiocyanate in chinese populations. 中華預防醫學雜誌 51:332-335.
    Yoshizumi K, Aoki K, Matsuoka T, Asakura S. 1985. Determination of nitrate by a flow system with a chemiluminescent nitrogen oxide (nox) analyzer. Anal Chem 57:737-740.
    Zaki A, Chaoui AA, Talibi A, Derouiche A, Aboussaouira T, Zarrouck K, et al. 2004. Impact of nitrate intake in drinking water on the thyroid gland activity in male rat. Toxicol Lett 147:27-33.
    Zewdie T, Smith CM, Hutcheson M, West CR. 2009. Basis of the massachusetts reference dose and drinking water standard for perchlorate. Environ Health Perspect 118:42-48.
    王仁助, 蔡淑珍, 吳宗諺. 2013. 蔬菜中硝酸鹽的思辨. 苗栗區農業專訊:4-6.
    衛生福利部食品藥物管理署. 2011. 蔬菜中硝酸鹽及亞硝酸鹽之檢驗方法(tfdao0004.00). Available: https://www.fda.gov.tw/upload/133/Content/蔬菜中硝酸鹽、亞硝酸鹽之檢驗方法-7(參考方法).pdf [accessed 2月3日 2018].
    衛生福利部食品藥物管理署. 2016. 茶葉中過氯酸鹽之檢驗方法(tfdao0026.00).
    賴鴻裕, 劉程煒, 陳柏青. 2011. 科學發展月刊467期「農業上的氮」.
    賴鴻裕, 陳柏青, 劉程煒. 2012. 科學發展月刊479期「吃得安心─蔬菜與硝酸鹽」.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE