簡易檢索 / 詳目顯示

研究生: 書世同
Shu, Shih-Tung
論文名稱: 一種旋轉式吹瓶機開關模凸輪連桿機構之最佳尺寸設計
On the Optimal Dimension Design of the Blow-Station Open/Close Cam-Linkage Mechanism of a Rotary Type Blow-Molding Machine
指導教授: 顏鴻森
Yan, Hong-Sen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 旋轉式吹瓶機凸輪連桿機構最佳設計尺寸設計
外文關鍵詞: rotary type blow-molding machine, cam-linkage mechanism, optimal design, dimension design
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二段旋轉式寶特瓶吹瓶機的吹瓶模座機構是由吹瓶輪以及開關模座連桿與凸輪機構所組成,其動力特性影響寶特瓶製程的穩定性。本研究利用運動曲線設計及連桿尺寸設計,針對開關模座連桿與凸輪機構進行動力特性分析。
    本研究首先利用傅利葉級數與B-spline曲線,設計新型運動曲線,接著透過向量迴路法配合運動係數法分析各個桿件之運動特性。根據運動分析的結果,利用包絡線原理與壓力角定義,求得凸輪輪廓外型與壓力角數值。再根據d’Alembert與牛頓運動定律,建立運動靜動力分析的數學模式,得到輸入扭矩、桿件接頭作用力、搖撼力及搖撼力矩。最後根據分析結果,針對開關模座連桿機構進行尺寸;透過最佳化方法,搖撼力之均方根值改善36.67%,搖撼力矩之均方根值改善48.76%,輸入扭矩之均方根值改善22.95%,輸入力之均方根值改善24.15%,且最大壓力角降低共6.31度至13.65度。
    本研究之成果可改善開關模座連桿與凸輪機構之運動與靜動力特性,降低開關模區間所產生的衝擊力,亦降低開關模凸輪機構的壓力角與輸入扭矩,可進一步提升吹瓶機之運轉速度與產量。

    The blow-station of a two-stage rotary type blow-molding machine consists of a blow-wheel, a pair of open-close mold linkage mechanism and an open-close mold cam mechanism. The productivity of the machine is dependent on the dynamic characteristics of the blow-mold station. By utilizing motion curve design and optimal dimensional design, the dynamic characteristics can be improved.
    In this study, firstly, the motion curves are designed by Fourier series and B-spline curve. Secondly, by using vector loop approach, the kinematic analysis is carried out. According to the kinematic analysis, the cam profile is synthesized based on the envelope theorem, and the pressure angle value is thus obtained. Then based on the d’Alembert’s principle and Newton’s laws, the input torque, the bearing force, the shaking force, and the shaking moment analysis are calculated. Finally, by utilizing the optimal design, a novel dimension design is obtained, and the root-mean-square value of shaking force is 36.67% lower, the root-mean-square value of shaking moment is 48.76% lower, the root-mean-square value of input torque is 22.95% lower and the root-mean-square value of input force is 24.15% lower. Furthermore, the maximum pressure angle is reduced to 13.65 degrees by 6.31 degrees.
    In summary, the dynamic characteristics of the blow-mold station are improved. And, the impulse force at the open-close phase, the pressure angle and the input torque are reduced. As a result, the productivity of the machine can thus be improved.

    Keywords: rotary type blow-molding machine, cam-linkage mechanism, optimal design, dimension design.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XI NOMENCLATURES XII Chapter 1 Introduction 1 1.1 Motivations and Objectives 1 1.2 Literature Review 2 1.2.1 Patents 2 1.2.2 Motion Curves Designs 6 1.2.3 Blow-Molding Machines 10 1.3 Summary 11 Chapter 2 Blow-Molding Machine and Motion Curves Design 12 2.1 Blow-Molding 12 2.2 Two-Stage Rotary Type Blow-Molding Machine 13 2.2.1 Blow-Station Device 15 2.2.2 Open/Close Cam-Linkage Mechanism 16 2.2.3 Motion of the Mechanism 17 2.2.4 Motion Requirements 18 2.3 Motion Curves of Cam 20 2.4 Motion Curves Design 22 2.4.1 B-spline Curve 22 2.4.2 Fourier Series 29 2.4.3 Comparisons 31 2.5 Summary 33 Chapter 3 Kinematic Analysis 34 3.1 Position Analysis 34 3.1.1 Inversion of the Open/Close Cam-linkage Mechanism 34 3.1.2 Vector Loop 36 3.2 Kinematic Coefficients 41 3.3 Angular Velocity and Acceleration Analysis 44 3.4 Velocity and Acceleration Analysis 47 3.5 Summary 50 Chapter 4 Cam Profile Synthesis and Kinetostatic Analysis 53 4.1 Cam Profile Synthesis 53 4.2 Pressure Angle Analysis 58 4.3 Dog-Bone Link System 59 4.4 Kinetostatic Analysis 61 4.5 Shaking Force and Shaking Moment 67 4.6 Input Force Analysis 68 4.7 Summary 70 Chapter 5 Optimization Design and Comparisons 71 5.1 Design Variables and Motion Curves Preference 71 5.2 Optimization Design 71 5.2.1 Optimum Linkage Type-I 72 5.2.2 Optimum Linkage Type-II 73 5.2.3 Optimum Linkage Type-III 74 5.2.4 Optimum Linkage Type-IV 74 5.2.5 Optimum Linkage Type-V 75 5.2.6 Optimization Results 76 5.3 Comparisons 76 5.4 Summary 81 Chapter 6 Conclusions and Suggestions 82 6.1 Conclusions 82 6.2 Suggestions 84 REFERENCES 85

    Albrecht T., 2003, Blow Mold and Blow-Molding Machine, U.S. Patent No. 6918754.
    Chen, C. F., 2005, Using Fourier Series to Determine the Input Speed Trajectory for the Optimum Balancing Design of Four-Bar Linkages, Master Thesis, Department of Mechanical Engineering, National Chang Kung University, Tainan, Taiwan.
    Choinski, J., 2002, Method and Device for Blow-Forming Containers, U.S. Patent No. 6770238.
    Fiorani D. and Mathy Jr. J.,2006, Take-Out Device for Rotary Blow Molding Machine, U.S. Patent No. 7101170.
    Hall, A. S., Jr., 1986, Notes on Mechanism Analysis, Waveland Press, Prospect Heights, Illinois.
    Hernann E. H., 2004, Blow Mold and Method for Adjusting a Blow Mold, U.S. Patent No. US 2004/0104517.
    Kauffman, I. and Kellogg, R.C., 1979, Rotary Stretch Blow-Molding Apparatus, U.S. Patent No. 4141680.
    The Krones Group, 2002, Device and Method for Producing Blow-Moulded Containers, WO 02/49829 A1.
    MacCarthy, B. L., 1988, “Quintic Splines for Kinematic Design,” Computer -Aided Design, Vol. 20, No. 7, pp. 406–415.
    Nakamura, Y., 1988, Rotary Type Blow Molding Machine, U.S. Patent No. 4946367
    Norton, R. L., 2004, Design of Machinery, 3rd Ed., McGraw-Hill, New York.
    Norton, R. L., 2002, Cam Design and Manufacturing Handbook, Industrial Press Inc., New York.
    Paul, P., 1979, Kinematics and Dynamics of Planar Machinery, Prentice Hall, New Jersey.
    Pickel, H. and Humele, H., 1999, Device for Introducing Containers into a Treatment Space and/or Removing Them Therefrom, U.S. Patent No. 6354427 B1.
    Qiu, H., Lin, C. J., Li, Z. Y., Ozaki, H., Wang, J., and Yue, Y., 2005, “A Universal Optimal Approach to Cam Curve Design and Its Applications,” Mechanism and Machine Theory, Vol. 40, No. 6, pp. 669-692.
    Rose, P., 2002, Process and Device for Controlling the Molding of a Container, U.S. Patent No. US 2002/0011681 A1.
    Rothbart, H. A., 1956, Cams Design, Dynamics, and Accuracy, Wily, New York. SIG Technology Ltd., 2006, Verfahren und Vorrichtung zur Blasformung von Behaltern, Deutsches Patent, DE 102005017540A1.
    Ting, K. L., Lee, N. L. and Brandan, G.. H., 1994, “Synthesis of Polynomial and Other Curves with the Bezier Technique,” Mechanism and Machine Theory, Vol. 29, No. 6, pp. 887–903.
    Tsai, J. D.. 2006, On the Design of the Cams of Transfer Device for a PET Blow-Molding Machine, Master Thesis, Department of Power Mechanical Engineering. National Formosa University, Yunlin, Taiwan.
    Tasy, D.M. and Huey, C.O., 1988, "Cam Motion Synthesis Using Spine Functions," ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp.161-165.
    Tsay, D. M. and Wei, H. M., 1993, "Profile Determination and Analysis of Cylindrical Cams with Oscillating Roller-followers, " Proceedings of ASME Design Automation Conference, Advances in Design Automation, De-Vol.65-1, pp. 711-718.
    Valles, T., 1997, Apparatus for Making Containers by Blow-Moulding Plastic, U.S. Patent No. 5683729.
    Wang, G. B., 2006, On the Design of the Open/Close Blow-Station Cam Mechanism of A Rotary Type Blow-Molding Machine, Master Thesis, Department of Mechanical Engineering, National Chang Kung University, Tainan, Taiwan.
    Winter, H. and Griesbeck, K., 2000, Blow-Moulding Machine, U.S. Patent No. 6152723.
    Yan, H. S. and Wu L. Y., 2006, Mechanism (in Chinese), 3rd Edition, Dong Hua Books, Taipei, Taiwan.
    Yan, H. S., 2007, Study on the Improvement of Dynamic Characteristics of Mechanisms of a Blow-Molding Machine, Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.

    Yoon, K. and Rao, S. S., 1993, “Cam Motion Synthesis Using Cubic Splines,” ASME Transactions, Journal of Mechanical Design, Vol. 115, No. 3, pp. 441–446.
    Zhang, J. H., 2008, Study on the Design of Dual-Cams of Blow-Molding Machines, Master Thesis, Department of Power Mechanical Engineering. National Formosa University, Yunlin, Taiwan.
    Ziegler, W. E., 1985, Multiple Station, Multiple Clamp Assembly Rotary Blow Molding Machines, U.S. Patent No.1986/4589838
    Zoppas, M. and Chiarotto, G., 2005, Apparatus for Blow-Moulding of Plastic Objects, World Intellectual Patent Cooperation Treaty (PCT), WO 2

    下載圖示 校內:2011-08-06公開
    校外:2012-08-06公開
    QR CODE