| 研究生: |
黃靖琪 , Huang, Gin-Chi |
|---|---|
| 論文名稱: |
刀豆氨酸(Canavanine)在糖尿病鼠產生降血糖作用之研究 Effect of Canavanine on Plasma Glucose in Diabetic Rats |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang 洪正路 Hung, Chen-Road |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 糖尿病 、咪唑啉受體 、胍類衍生物 |
| 外文關鍵詞: | canavanine, imidazoline receptor, diabetes |
| 相關次數: | 點閱:156 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多研究已證實胍類衍生物(guanidine-derivative compound)可能活化咪唑啉第二型受體(imidazoline subtype 2 receptor, I2R)產生降血糖作用,或是活化咪唑啉第三型受體(imidazoline subtype 3 receptor, I3R)促進胰島素的釋放。Canavanine 為Sutherlandia frutescens和苜蓿芽的主要活性成分之ㄧ,且結構中具有胍類結構。故本研究想要探討canavanine是否經由活化imidazoline receptor而具有降血糖作用。在正常大白鼠可觀察到canavanine具有調降血糖的作用。在streptozocin誘導第一型糖尿病大鼠上,canavanine除了使血糖下降以外,同時也可增加-endorphin 的釋放。這兩項作用在預先給予I2R拮抗劑(BU224)後會被抑制。canavanine可經活化I2R達到增加正常大白鼠骨骼肌對葡萄糖的攝取,接著,canavanine可促進C2C12 肌母細胞對葡萄糖的攝入,這項作用可被BU224和amiloride (I2A接受器阻斷劑)所抑制。文獻指出,腺苷酸活化蛋白激酶(AMPK)磷酸化後,可增加第四型葡萄糖轉運蛋白(Glut4)的蛋白表現量,進而可增加對葡萄糖攝入。因次,利用西方點墨法去觀察在給予藥物後,C2C12肌母細胞AMPK的磷酸化及Glut4的蛋白表現。由結果可以看到BU224和amiloride可以抑制canavanine促進的AMPK磷酸化,同時Glut4蛋白的表現量亦可被BU224、amiloride及Compound C (AMPK磷酸化的抑制劑)所抑制。此外,在正常大白鼠中發現canavanine具有促進胰島素釋放的作用。在HIT-T15胰島細胞canavanine也會有促進胰島素分泌的作用,且可被KU 14R (I3接收器阻斷劑)所抑制。最後,利用葡萄糖耐受性試驗、胰島素耐受性試驗及HOMA-IR進行分析得知canavanine不只可以增加葡萄糖的利用率,同時也可增加胰島素敏感性。综合以上結果,canavanine可經由活化I2R以非胰島素依賴的路徑和經由活化I3R以胰島素依賴路徑達到降血糖作用,此也暗示著canavanine有益於治療第一型或第二型的糖尿病。
Several studies have been demonstrated that the guanidine-derivative compound has a potent effect on decreasing the plasma glucose via imidazoline subtype 2 receptor (I2R) or increasing the secretion of insulin via imidazoline subtype 3 receptor (I3R). Canavanine, belongs to one of the guanidine derivatives, is one of the active ingredient extracted from Sutherlandia frutescens and Medicago sativa. The present study aimed to clarify whether canavanine exerted the hypoglycemic effect through activating IR. In normal rats, canavanine decreased the blood glucose in a dose-dependent manner. In streptozotocin-induced diabetic rats, canavanine lowered the plasma glucose and increased -endorphin, which were abolished by pretreatment the rats with BU224 at the dose sufficient to block I2R. Canavanine also dose-dependently increased the glucose uptake in isolated skeletal muscle, which was blocked by BU224. Moreover, we used C2C12 skeletal myoblast cells to verify whether canavanine augmented the glucose uptake ability via I2R. Results showed that canavanine dose-dependently increased the glucose uptake in C2C12 cells, whereas this effect was blocked by both BU224 and amiloride (an I2A blocker). Several studies indicated that the phosphorylated AMPK (pAMPK) raises expression of glucose transporter 4 (Glut4), leading to the increase of glucose uptake. We also employed Western blotting analysis to detect the effect of canavanine on AMPK phosphorylation and Glut4 expression. These results revealed that canavanine enhanced the levels of pAMPK and Glut4 expression in C2C12 cells, which were abolished by BU224, amiloride and compound C (an AMPK inhibitor). Furthermore, canavanine produced an insulinotropic action in normal rats. An increase of insulin release was observed by canavanine in HIT-T15 cells, a pancreatic islet -cell, whereas this effect was blocked by I3R antagonist, KU 14 R. Finally, we also found that canavanine not only increased the ability on glucose utilization but also improved the insulin sensitivity determined by glucose tolerance test, insulin tolerance test and HOMA-IR. Taken together, these results suggested that canavanine produced hypoglycemic action through both I2R in insulin-independent and I3R in insulin-dependent pathways and implicated that it might be beneficial effect for both type 1 and type 2 diabetes.
Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo.Endocr Rev. 6:45-86.
Bousquet P (2001) I1 receptors, cardiovascular function, and metabolism. Am J Hypertens. 14:317S-321S.
Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 23:57-63.
Chang. X and Mowat. DN (1992) Supplemental chromium for stressed and growing feeder calves. J. Anim. Sci. 70: 559-565.
Chadwick WA, Roux S, van de Venter M, Louw J, Oelofsen W (2007) Anti-diabetic effects of Sutherlandia frutescens in Wistar rats fed a diabetogenic diet. J Ethnopharmacol. 109:121-127.
Christophe D, Isabel R (2004) Imidazoline Binding Sites and Their Ligands: An Overview of the Deferent Chemical StructuresMedicinal Research Reviews 24:639-661,
Chang SL, Lin JG, Chi TC, Liu IM, Cheng JT (1999) An insulin-dependent hypoglyceamia induced by electroacupuncyure at the Zhongwan(CV12) acupoint in the diabetic rats. Diabetologia 42: 250-252
Cheng JT, Liu IM, Chi TC, Tzeng TF, Lu FH, Chang CJ (2001) Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats. Diabetes. 50:2815-2821
Cheng JT, Huang CC, Liu IM, Tzeng TF, Chang CJ (2006) Novel Mechanism for Plasma Glucose–Lowering Action of Metformin in Streptozotocin-Induced Diabetic Rats. Diabetes.55:819-825
Donald L., Leslie L. Bennett and Choh Hao Li (1987) Stimulation of insulin secretion by beta-endorphins (I-27 & I-31) Life Sci 40:2053–2058
Diamant S, Eldar-Geva T, Atlas D (1992) Imidazoline binding sites in human placenta: evidence for heterogeneity and a search for
physiological function. Br J Pharmacol.106:101-108
Eizirik DL, Sandler S, Palmer JP (1993) Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes. 42:1383-1391
Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren PO, Efendic S. (2001)The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic beta-cells in the absence of modulation of K(ATP) channel activity. Diabetes. 50:797-802
Gliemann J, Rees WD, Foly JA (1984) The fate of labelled glucose molecules in the rat adipocyte Dependence on glucose concentration. Biochim Biophys Acta. 804:68-76
Gerald A., Rosenthal B (1986) Biochemical insight into insecticidal properties of L-Canavanine, a higher plant protective allelochemical. Journal of Chemical Ecology 12: 1145 - 1156.
Godsland IF, Luzio S, Wynn V, Owens DR (1994) Methodological issues in the application of the minimal model: effects of glucose dose, basal glucose concentration, test duration and modelling constraint. Diabetes Res. 26:139-153.
Goldstein BJ (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol. 90:3G-10G.
Goldstein DA, Massry SG (1987) Diabetic nephropathy:Clinical course andeffect of hemodialysis. Nephron 20: 286-296
Goldstein DA (1987) Binding selectivity profiles for ligands of multiple receptor types: focus on opioid receptors. Trends Pharmacol Sci 8:456–459
Grulet H, Durlach V, Hecart AC, Gross A, Leutenegger M (1993) Study of the rate of early glucose disappearance following insulin injection: insulin sensitivity index. Diabetes Res Clin Prac.t 20:201-207
Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, Goodyear LJ, Horton ES (1999) Diabetes. 48:1192-1197.
Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem. 4:17-32
Hwang SL, Liu IM, Tzeng TF, Cheng JT (2005) Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetologia 48: 767–775
Hayashi LT, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369-1373
Hundal RS, Inzucchi SE (2003) Metformin: new understandings, new uses. Drugs 63:1879–1894
Han GC, Ko SK, Sung JH, Chung SH (2007) Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J Agric Food Chem. 55:10641-106418.
Klip A, Logan WJ, Li G (1982) Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochim Biophys Acta.687:265-280.
Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5' AMP-activated protein kinase activation causes Glut4 translocation in skeletal muscle. Diabetes. 48:1667-1671
Lee MK, Miles PD, Khoursheed M, Gao KM, Moossa AR and Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 43:1435-1439
Liu IM, Hsu FL, Chen CF, Cheng JT (2000) Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic rats. Br J Pharmacol. 129:631-636
Liu IM, Chi TC, Chen YC, Lu FH, Cheng JT (1999) Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin-induced diabetic rats. Neurosci Lett. 23:183-186
Liu IM, Chi TC, Shiao GC, Lin MT, Cheng JT (2001) Loss of plasma glucose-lowering response to cold stress in opioid mu-receptor knock-out diabetic mice. Neurosci Lett 307:81–84
Liu IM, Liou SS, Chen WC, Chen PF, Cheng JT (2004) Signals in the activation of opioid μ-receptors by loperamide to enhance glucose uptake into cultured C2C12 cells. Horm Metab Res 36:210-214
Le Brigand L, Virsolvy A, Manechez D, Godfroid JJ, Guardiola-Lemaître B, Gribble FM, Ashcroft FM, Bataille D (1999) In vitro mechanism of action on insulin release of S-22068, a new putative antidiabetic compound. Br J Pharmacol. 128:1021-1026
Mihály K, Tóth S, Szlávik L, Tóth A, Csermely P (1998) Attenuation of diabetic retinopathy by the molecular chaperone-inducer amino acid analogue canavanine in streptozotocin-diabetic rats. Cell Mol Life Sci 54:1154-1160
Morgan NG, Chan SL, Brown CA, Tsoli E (1995) Characterization of the imidazoline binding site involved in regulation of insulin secretion. Ann N Y Acad Sci 763:361-373.
Nagasawa H, Watanabe K, Yoshida M, Inatomi H (2001) Effects of gold banded lily (Lilium auratum Lindl) or Chinese milk vetch (Astragalus sinicus L) on spontaneous mammary tumourigenesis in SHN mice. Anticancer Res. 21:2323-2328
Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V (1995) Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension. 26:1074-1078
Page TG, Southern LL, Ward TL, and Thompson DL (1993) Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs. J. Anim. Sci. 71: 656-662.
Regunathan S, Reis DJ (1996) Imidazoline receptors and their endogenous ligands. Annu Rev Pharmacol Toxicol. 36:511-544.
Rhodes CJ, White MF (2002) Molecular insights into insulin action and secretion. Eur J Clin Invest. 3:3-13.
Rosenthal GA (1997) L-canaline: a potent antimetabolite and anti-cancer agent from leguminous plants. Life Sci. 60:1635-1641.
Sia C (2004) Spotlight on ethnomedicine: usability of Sutherlandia frutescens in the treatment of diabetes. Rev Diabet Stud. 1:145-1499
Sachs JA. , Cudworth AG. , Jaraquemada D , Gorsuch AN, Festenstein H (1980) Type 1 diabetes and the HLA-D locus. Diabetologia 18 :41-43
Sun Z, Chang CH, Ernsberger P (2007) Identification of IRAS/Nischarin as an I1-imidazoline receptor in PC12 rat pheochromocytoma cells. J Neurochem. 101:99-108.
Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S (2006) Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol. 101:1685-1692.
Swaffar DS, Ang CY, Desai PB, Rosenthal GA (1994) Inhibition of the growth of human pancreatic cancer cells by the arginine antimetabolite L-canavanine. Cancer Res. 54:6045-6048
Shepherd RM, Hashmi MN, Kane C, Squires PE, Dunne MJ (1996) Elevation of cytosolic calcium by imidazolines in mouse islets of Langerhans: implications for stimulus-response coupling of insulin release.Br J Pharmacol. 119:911-916
Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia. 33:462-464
Towler MC, Hardie DG (2007) AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling Circ Res.100:328-341.
Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 277:E1-E10
Wu Y, Ou-Yang JP, Wu K, Wang Y, Zhou YF, Wen CY (2005) Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin. 26:345-352
Yea-Woon Kim, Ki-Hoon Kim, Hyun-Ju Choi, Gong-Seok Lee (2005) Anti-diabetic activity of b-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnology Letters 27: 483–487
Yamamoto N, Mueller-Lantzsch N, zur-Hausen H (1980) Differential inhibition of Epstein-Barr virus induction by the amino acid analogue, L-canavanine. Int J Cancer 25:439-443.
Zimmet P, Alberti K, Shaw, Go J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787.
Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, Dohm GL (2001) Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase J Appl Physiol 91: 1073-1083
侯盻 等。生藥材調節血糖有效成分的研究。遼寧實用糖尿病雜誌 11:56-58, 2003
王竹鑫 等。槐花及混偽品的鑑別。湖南中醫雜誌 16:49-50, 2000