簡易檢索 / 詳目顯示

研究生: 林宓璇
Lin, Mi-Hsuan
論文名稱: 高溫高壓製程對鹼激發玻璃膠結材性質之影響
Effects of High Temperature and High Pressure on the Properties of Alkali-Activated Glass Binders
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 廢玻璃鹼激發無機聚合陳化高溫高壓製程
外文關鍵詞: Waste glass, Alkali-activation, Aging, High temperature and pressure process
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 市面上營建材料及隔間板材,大多以波特蘭水泥作為膠結材,水泥屬高耗能及高二氧化碳排放量之工業產品,對地球環境生態造成嚴重衝擊。另外,水泥水化反應於常溫環境下較為緩慢,為節省營運時間及製造成本,可利用高溫高壓製程加速膠結材反應,因此,使用適當廢棄物製作低成本與低汙染之膠結材,以取代傳統波特蘭水泥,經由配比設計與高溫高壓養護製程,評估其應用於製作新型營建板材之可行性。廢容器玻璃不易分解,通常採用焚燒或掩埋方式處理,不但對焚化爐本體造成傷害,甚至可能破壞自然生態,為解決目前廢容器玻璃無去化處問題,本研究首先選用經研磨廢玻璃粉末,添加適量氫氧化鈉溶液,製成鹼激發玻璃膠結材,探討鹼當量、陳化溫度與養護條件等,對所製成鹼激發玻璃膠結材抗壓強度之影響,為降低製作成本,僅添加氫氧化鈉溶液作為鹼活化劑,藉由陳化方式增加玻璃粉末於鹼液中之溶解速率,不同配比設計條件下,透過高溫高壓養護製程以增加試體抗壓強度,評估高溫高壓製程應用於製作鹼激發玻璃膠結材之可行性,期能將相關原理應用於現有營建板材高溫高壓製程。研究結果顯示,高溫高壓製程不僅有助於提升鹼激發玻璃膠結材之抗壓強度,更可大幅縮短養護時程及減低鹼活化劑用量,於壓力2MPa與持壓時間2小時養護條件下,所製成試體抗壓強度可高達60.16MPa,因此,鹼激發玻璃膠結材深具潛力開發成新型營建材料。

    Commercially available construction panels are mainly made from Portland cement whose production process is harmful to the earth because of its high energy cost and high carbon emission. In the study, Portland cement binder is replaced by waste glass binder, which is alkali-activated under high temperature and high pressure to produce novel construction panels. Container glass is not easily to be decomposed, and it is usually treated by the methods of incineration or waste disposal, inevitably leading to the damage of the incinerators or the impact on the ecology of our environment.
    In order to solve the current disposal problem, waste container glass is first ground to become fine powder and then used as a raw material in the production of alkali-activated glass binder. The effects of alkaline equivalent content, aging high temperature and high pressure and curing condition on the compressive strengths of alkali-activated glass binders are investigated. Only sodium hydroxide is used in the alkaline activator solution to reduce the manufacturing cost of alkali-activated glass binders. Also, an aging process under high temperature and pressure is employed here to accelerate the dissolution reaction of glass powders in the alkaline activator solution. As a result, the feasibility for the replacement of Portland cement by waste glass powders in the production of alkaliactivated binders under high temperature and pressure is evaluated. It is found that the compressive strengths of alkali-activated glass binders produced under the aging process of high temperature and pressure can reach up to 60.16MPa after two hours curing of 2MPa pressure. Hence, alkali-activated glass binders made under high temperature and pressure are promising for the application as a novel construction material.

    目錄 摘要.........................I EXTENDED ABSTRACT...........II 致謝........................IX 目錄.........................X 表目錄.....................XIII 圖目錄......................XIV 第一章 緒論..................1 1.1 研究動機與目的.............1 1.2 本文組織與內容.............3 第二章 文獻回顧...............5 2.1 玻璃材料...................5 2.1.1 玻璃成分與構造............5 2.1.2 玻璃物理性質..............5 2.1.3 廢玻璃現存問題............6 2.2 鹼激發膠結材................7 2.2.1 鹼激發膠結材之發展與原理...7 2.2.2 無機聚合物................8 2.2.3 影響鹼激發膠結材強度因素...10 2.3 鹼激發玻璃膠結材............14 2.3.1 玻璃之侵蝕...............14 2.3.2 矽酸鹽之縮聚..............16 2.3.3 鹼激發玻璃膠結材現況.......16 2.4 高溫高壓製程.................18 2.4.1 高溫高壓養護對無機膠結材之影響..18 2.4.2 高溫高壓養護對玻璃膠結材之影響..19 2.4.3 高溫高壓養護製程於產業之應用..21 第三章 試驗材料與方法............26 3.1 試驗規劃.....................26 3.2 試驗材料與儀器................27 3.2.1 試驗材料....................27 3.2.2 試驗儀器....................27 3.3 試驗變數......................29 3.3.1 試驗變數定義.................29 3.3.2 高溫養護之變數規劃...........30 3.3.3 高溫高壓養護之變數規劃........31 3.4 試體製作.......................32 3.4.1 高溫養護之鹼激發玻璃膠結材.....32 3.4.2 高溫高壓養護之鹼激發玻璃膠結材.33 3.5 試驗方法.......................34 3.5.1 玻璃粉末材料試驗..............34 3.5.2 抗壓試驗......................35 第四章 試驗結果與討論..............42 4.1 高溫養護之鹼激發玻璃膠結材.......42 4.1.1 陳化溫度對抗壓強度之影響.......42 4.1.2 鹼當量對抗壓強度之影響.........44 4.1.3 養護時間對抗壓強度之影響.......45 4.2 高溫高壓養護之鹼激發玻璃膠結材....46 4.2.1 陳化溫度對抗壓強度之影響........47 4.2.2 鹼當量對抗壓強度之影響.........48 4.2.3 養護時間及壓力對抗壓強度之影響..49 4.3 綜合比較........................50 第五章 結論與建議..................79 5.1 結論...........................79 5.2 建議...........................81 參考文獻............................83

    [1]行政院環境保護署,「環境資源資料庫」,2020。
    [2]Helmi, M., Hall, M., Stevens, L. and Rigby, S.,Effects Of High-Pressure/Temperature Curing On Reactive Powder Concrete Microstructure Formation, Construction and Building Materials,Volume 105, 15 February 2016, Pages 554-562.
    [3]科學月刊雜誌社,第139期,1981。
    [4]劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,「工程材料科學」修訂版,全華科技圖書股份有限公司,2000。
    [5]王愫懃,廢玻璃與廢燈管資源回收循環,碩士論文,國立台北科技大學環境工程與管理研究所,2010。
    [6]Purdon, A.O., The action of alkalis on blast-furnace slag, Journal of the Society of Chemical Industry, vol. 59,no. 9,pp.191-202,1940.
    [7]Glukhovsky, V.D., Soil Silicates. Their Properties, Technology and Manufacturing and Fields of Application.Doct. Tech. Sc. Degree thesis, Civil Engineering Institute of Kiev, Kiev, Ukraine, 1965.
    [8]Davidovits, J., and Sawyer, J.L., U.S. Patent No. 4,509,985, U.S. Patent and Trademark Office, Washington, DC, 1985.
    [9]Campbell, DH, and Folk, RL. The ancient Egyptian pyramids-concrete or rock. Concr Int 1991:29–44.
    [10]Granizo, ML., Activation alcalina de metacaolin: desarrolllo de nuevos materials cementantes. PhD thesis, University Autonoma of Madrid,1998.
    [11]Shi, Caijun, and Day Robert, A calorimetric study of early hydration of alkali-slag cements. Cement Concrete Res 1995;25:1333–46.
    [12]Glukhovsky, VD., Rostovskaja, GS., Rumyna, GV., High strength slag alkaline cements. In: Proceedings of the seventh international congress on the chemistry of cement, vol. 3; 1980. p. 164–8.
    [13]Davidovits, J., Synthesis of new high temperature geo-polymers for reinforced plastics/composites. SPE PACTEC 79 Society of Plastic Engineers, Brookfield Center; 1979. p. 151–4.
    [14]Davidovits, J., Method for eliminating the alkali-aggregate reaction in concretes and cement thereby obtained. U. S. Patent 5288321, 1994.
    [15]Van Jaarsveld, J., Van Deventer J., and Lukey G., The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers, Chemical Engineering Journal 89 (1) (2002) 63-73.
    [16]Xu, H.,and Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing 59 (3) (2000) 247-266.
    [17]許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,碩士論文,國立成功大學土木工程學系,2009。
    [18]Caijun, S., and Yinyu, L., Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research 19 (4) (1989) 527-533.
    [19]Tai, S.C., A study on geopolymerization of Kaolinite aluminosilicate materials, Master, Department of Material and Mineral Resources Engineering, National Taipei University of Technology, 2005.
    [20]Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., and Van Deventer J.S., Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects 269 (1) (2005) 47-58.
    [21]陳泰安,陳化與養護製程對鹼激發玻璃無機膠結材性質之影響,博士論文,國立成功大學土木工程學系,2016。
    [22]ACI 517.2R , Accelerated Curing of Concrete at Atmospheric Pressure - State of the Art, 1992.
    [23]Cioffi, R., Maffucci, L., and Santoro, L., Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue, Resources, Conservation and Recycling 40 (1) (2003) 27-38.
    [24]Bakharev, T., Sanjayan, J., and Cheng, Y.-B., Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cement and Concrete Research 29 (10) (1999) 1619-1625.
    [25]Fernández-Jiménez, A., Palomo, J., and Puertas, F., Alkali-activated slag mortars: mechanical strength behaviour, Cement and Concrete Research 29 (8) (1999) 1313-1321.
    [26]金左培,鹼激發玻璃材料,房材與應用,Vol. 31 No.2,pp.19-20,2003。
    [27]鄭大偉、江世哲,以廢玻璃製成防火材料之研究,第十八屆廢棄物處理技術論文集,台中,2003。
    [28]趙駿穎,廢玻璃鹼激發膠結材之研究,碩士論文,國立成功大學土木工程學系,2008。
    [29]Shiedeler, JJ., Early Strength of Concrete as Affected by Steam Curing Temperatures.ACI,Journal,ProceedingsV.46,No.4,Dec.1949,pp.273~283.
    [30]Boey, F.Y.C., and Lye, S.W., Void Reduction in Autoclave Processing of Thermoset Composites-part 1:High Pressure Effects on Void Reduction,1992.
    [31]楊佩琳,不同養護條件下添加飛灰或爐灰對水泥質材料性質影響之研究,碩士論文,國立台灣海洋大學,河海工程學系,2005。
    [32]陳良博,高溫高壓蒸氣養護TAICON對鋼筋握裹力影響之研究,碩士論文,國立交通大學,土木工程學系,2000。
    [33]何昌君、龔平,蒸壓條件下廢玻璃的水熱特性研究,長江大學學報A(自然科學版),第3卷第2期,95-99,2006。
    [34]Hoshi, K., Kawai, S., Yanagisawa, K., and Yamasaki, N., Densification process for spherical glass powders with the same particle size by hydrothermal-hot pressing,Journal of materials science, 26,6448-6452,1991.
    [35]林宏飛、山崎仲道、許淑惠,水熱熱壓條件下玻璃水化過程的研究,玻璃與陶瓷,Vol. 29 NO. 5,2001。
    [36]王宣棫,TFT-LCD廢玻璃應用於營建板材之可行性研究,碩士論文,國立成功大學土木工程學系,2018。
    [37]詹穎雯、石嘉玉,輕質竹材水泥板於營建工程應用之研究(第二年),內政部建築研究所委託研究報告,國立嘉義大學,2007。
    [38]張祖恩、陳文卿,建築廢棄物再生循環技術開發與推廣應用計畫,內政部建築研究所,2011。
    [39]陳志賢,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木工程學系,2009。
    [40]中央氣象局南區氣象服務:https://south.cwb.gov.tw/。

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE