簡易檢索 / 詳目顯示

研究生: 劉姿伶
Liu, Zi-Ling
論文名稱: 全人工髖關節髖臼杯力學穩定度之探討
The Mechanical Stability Analysis of Total Hip Acetabular Cup
指導教授: 張志涵
Chang, Chih-Han
賴國安
Lai, Kuo-An
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 微小位移量鬆脫全人工髖關節手術初期穩定度有限元素模型
外文關鍵詞: Total hip arthroplasty, loosening, micro-motion, initial stabilization, finite element
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近半世紀以來全人工髖關節手術已廣泛應用骨關節相關疾病,並得到十分良好的手術成功率。目前全人工髖關節手術失敗原因大多是髖臼杯組件的相關問題所導致,其中以磨耗和鬆脫為主。近年來磨耗問題已被廣泛討論,但鬆脫的相關研究甚少。金屬髖臼杯植入人體髖臼窩後由於承受人體重量,會造成髖臼杯和骨盆間有微小位移量(micro-motion),此初始的不穩定會降低氫氧基磷灰石(Hydroxyapatite)誘導骨質長入(bone-ingrowth)的能力,無法達到較佳之骨整合(osseous integration)效果。因此初期穩定度(initial stability)是影響手術長期成功率的重要指標。本研究利用臨床常使用的髖臼杯建立有限元素模型,並以實驗來驗證此模型的準確性,同時以人體步態負荷施力,探討髖臼杯組件尺寸以及螺絲鎖入數目、位置對固定髖臼杯的初期穩定度進行探討。
    本研究結果顯示,發現偏心骨螺絲以及鎖入螺絲的力量是影響穩定度的重要因素之一。髖臼杯組件尺寸在不考慮磨耗問題之下,球頭或內襯尺寸減少以及髖臼杯厚度增加,可減少髖臼杯和骨盆間相對位移量的產生,其中又以增加髖臼杯厚度對穩定度的貢獻最大。而由螺絲數目、位置對穩定度之模擬結果可知,鎖入三根骨螺絲即可達到相當於固定四根或五根螺絲的穩定程度。另外人體步態動作中髖球頭合力大多指向髖臼窩後上(posterior-superior)方區域為主,由本研究模擬結果可知,如果以三根骨螺絲來作固定,建議臨床醫師在骨螺絲無偏心問題及手術技巧允許下,可將其中二根骨螺絲鎖在髖臼窩的後側區域,一根在前側區域,如此可以增加支持面積、縮短負荷力臂,減少相對位移量,達到較佳的穩定效果,同時也可以使骨整合的更好,提高手術長期的成功率。

    Total hip arthroplasty has been popularized for almost half century and greatly improved life quality of patients with osteoarthrosis of the hip. The major failure modes of the cementless cup are polyethylene wear and cup loosening. Many studies have focused on the wearing, while studies of the loosing were relatively less. The unstable of cup would induce large micro-motion under dynamic loading. The large micro-motion would reduce bone ingrowth on the HA (Hydroxyapatite) coated cup surface and prohibit the osseous integration. The initial fixation is a vital factor for bone ingrowth and thus the long-term success of the implant. In this study, 3-D finite element models of the clinical available acetabular cups were established to investigate the initial stabilization under gait loadings with particular emphasize on the component dimensions and the screw numbers and screw locations. The finite element approach was also validated by the simplified experiment.
    The results showed that the eccentric for screw insertion and the applied torque are important for the stability of cup. Ignoring the wearing effect, decreasing the dimension of the femoral head and the PE liner or increasing the cup thickness would reduce the micro-motion between the pelvis and cup. Among these, the cup thickness has the greatest impact. As for the numbers of screw, three screws are sufficient to reach the stability provided by four or five screws. With three screws, based on the simulation results, it is suggested that using two screws at the posterior region with one screw at the anterior region could provide better stability outcome since this arrangement would supply a large supporting area and less moment arm under gait loading. (The direction of the gait loading is orientated toward the posterior-superior direction.) With this study it is hoped to provide clinical guideline for better cup stability, which can enhance the osseous integration and improve the long-term success of the implant.

    目錄 中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………II 誌謝…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄…………………………………………………………………VIII 第一章 緒論 1-1研究背景……………………………………………………………1 1-2相關文獻回顧……………………………………………………………8 1-3 研究動機與目的 ………………………………………………………………15 第二章 材料與方法 2-1 髖臼杯穩定度之實驗量測及有限元素模擬之驗證 …………………………………………………………19 2-1.1 髖臼杯穩定度之實驗量測………………………………………………………19 2-1.2 髖臼杯穩定度之有限元素模擬………………………………………………………22 2-1.3實驗與有限元素模擬結果之比對方法………………………………………………………25 2-2髖臼杯組件尺寸對穩定度影響之力學分析………………………………………………………28 2-2.1髖臼杯之有限元素模型及組件尺寸之參數設計………………………………………………………28 2-2.2邊界條件與負載條件………………………………………………………31 2-3.髖臼杯之骨螺絲數目、位置對穩定度影響………………………………………………………33 2-3.1髖臼杯之有限元素模型及骨螺絲之相關參數設計………………………………………………………33 2-3.2邊界條件與負載條件………………………………………………………34 第三章 結果 3-1髖臼杯穩定度實驗結果及有限元素模擬之比對………………………………………………………36 3-1.1實驗結果………………………………………………………36 3-1.2有限元素模擬結果………………………………………………………42 3-1.3實驗與模擬比對………………………………………………………46 3-2髖臼杯組件尺寸對穩定度之影響結果………………………………………………………48 3-2.1固定球頭與內襯尺寸………………………………………………………50 3-2.2固定球頭與髖臼杯尺寸………………………………………………………51 3-2.3固定內襯與髖臼杯尺寸………………………………………………………52 3-3螺絲數目、位置對穩定度之影響………………………………………………………53 3-3.1固定一根螺絲………………………………………………………55 3-3.2固定兩根螺絲………………………………………………………56 3-3.3固定三根螺絲………………………………………………………57 3-3.4固定四根螺絲、五根螺絲………………………………………………………58 第四章 討論 4-1影響本實驗結果相關因素………………………………………………………60 4-2實驗與有限元素模擬比對結果之相關因素………………………………………………………61 4-3髖臼杯尺寸對穩定度之影響………………………………………………………62 4-4有限元素模擬結果與實際臨床之探討………………………………………………………65 4-5骨螺絲參數對穩定度之分析………………………………………………………66 4-6 其它影響有限元素模擬之相關因素………………………………………………………68 4-6.1 髖臼杯及內襯介面之影響………………………………………………………68 第五章 結論與未來展望 5-1結論…………………………………………………72 5-2未來展望…………………………………………………………73 參考文獻…………………………………………………………74

    參考文獻

    [1] Apel, D.M, Smith, D.G., Schwartz, C.M., Paprosky, W.G., 1989. Threaded cup acetabulloplasty. Clinical Orthopaedics and Related Research 241, pp. 183-189.

    [2] Bergmann, G.,G, Rohlmann, A.F, 1993. Hip joint loading during walking and running, measured in two patients. Journal of Biomechanics 26, pp. 969-990.

    [3] Brooker, A.F., Collier, J.P., 1984. Evidence of bone in-growth into a propous-coated prosthesis. Journal of Bone and Joint Surgery. American Volume 66, pp. 619-621.

    [4] Bulter, C.A., Jones, L.C.1998. Initial stability of porous coated total hip femoral components: a mechanical study of micromovement. Journal of Orthopaedic Research 13, pp. 549-560.

    [5] Burke, D.W., Bragdon, G.R., Connor, D.O., 1991. Dynamic measurement of interface mechanic in vivo and the effect of micromotion on bone ingrowth into a porous surface device under controlled loads in vivo. Proceedings of the Orthopaedic Research Society 37th Annual Meeting, Anaheim, March.

    [6] Cameron, H.U., Pilliar, R.M., MacNab, J., 1973. The effect of movement on the bonding of porous metal to bone. Journal of Biomedical Material Research 7, pp. 301-311.

    [7] Capello, W.N., Anotonio, J.A., Manley, M.T., Reinberg, J.R., 1998. Hydroxyapatite in total hip arthroplasty: clinical results and critical issues. Clinical Orthopaedics and Related Research 355, pp. 200-211.

    [8] Carter, D.R., Vasu, R., Harris, W.H., 1982. Stress distributions in the acetabular region-I. Effects of cement thickness and metal backing of the total hip acetabular component. Journal of Biomechanics 15, 165-170.

    [9] Chen, J.H., Wu, J.S.S., Chang, W.H., Shih, C.H., 1996. An Algorithm for Estimating the Accurate Polyethylene Wear. Journal of Orthopaedic Surgery13, pp. 59-72.

    [10] Delaunay, C.P., Kapandji,A.I., 1997. Acetabular Screw Rings and Surface Treatment. Clinical Orthopaedics and Related Number 340, pp. 130-141.

    [11].Scifert,C.F., Brown,T.D.,Pedersen.,D.R., Callaghan.,J.J., 1998. A Finite Element Analysis of Factors Influencing Total Hip Dislocation. Clinical Orthopaedics and Related Number 355, pp. 152-162.

    [12] Dalsta, M., Huiskes, R., 1994 Prestresses around the acetabulum generated by screwed cups. Clinical Material 16, pp. 145-154.

    [13] Dalstra, M., Huiskes, R., 1995. Load transfer across the pelvic bone. Journal of Biomechanics 28, pp. 715-724.

    [14] Dalstra, M., Huiskes. R., Erning, L.V., 1995. Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering 117, pp. 272-278.

    [15] Effenberrger, H., Witzel, U., Lintner, F., Rieger, W., 2001. Stress analysis of threaded cups. International Orthopaedics 25, pp. 228-235.

    [16] Engh, C.A., Griffin, W.L., Marx, C.L., 1989. Cementless acetabular components. Journal of Bone and Joint Surgery. British Volume 72, pp. 53-59.

    [17] Furlong, R.J., Osborn, J.F., 1991. Fixation of hip prostheses by hydroxyapatite ceramic coatings. Journal of Bone and Joint Surgery. British Volume 73. pp. 741–745.

    [18] Haddadm R.J., Cool, S.D., Brinker, M.R., 1990. A comparison of three varieties of noncemented porous-coated hip replacement. Journal of Bone and Joint Surgery. British Volume 72, pp. 2-8.

    [19] Huskes, R., 1993. Failed Innovation in Total Hip Replacement. Journal of Biomechanics 6, pp. 699-716.

    [20] Huiskes, R., 1987. Finite element analysis of acetabular reconstruction: noncemented threaded cups. Acta Orthopaedica Scandinavica 58, pp. 620-625.

    [21] Huiskes, R., Strens, P.H.G.E., Heck, J. V., Sloof, T.J.J.H., 1985. Interface stresses in the resurfaced hip: finite element analysis of load transmission in the femoral head. Acta Orthopaedica Scandinavica 56, pp. 474-478.

    [22] Jasty, M., Harris, W.H., 1988. . Results of total hip reconstruction using acetabular mesh in patients with central acetabular deficiency. Clinical Orthopaedics and Related Research 237, pp. 142-149.

    [23] Kurtz, S.M., Edidin, A.A., Bartel, D.L., 1997. The role of backside polishing,cup angle, and polyethylene thickness on the contact stresses in metal-backed acetabular components. Journal of Biomechanics 30, pp. 639-642.

    [24] Kurtz, S.M., Ochoa, J.A., Hovey, C.B., White, C.V., 1999. Simulation of initial frontside and backside wear rates in a modular acetabular component woth multiple screw holes. Journal of Biomechanics 32, pp. 967-976.

    [25] Ries, M.D., Harbaugh, M., Shea J, Lambert .R., 1997. Effect of Cementless Acetabular Cup Geometry on Strain Distribution and Press-fit Stability Journal of Arthroplasty 12, pp. 207-213.

    [26] Lai, K.A., Lee, C.C., Lin, J.H., Hu, W.P., Chang, G.L., Yang, C.Y., 2001. Retrieval study of failured HA coated acetabular cups. Journal of Orthopaedic Surgery 18, pp. 7-13.

    [27] Lai, K.A., Shen, C.H., Yang, C.Y., Hu, W.P., Chang, G.L., 2002. Failure of hydroxyapatite-coated acetabular cups. Journal of Bone and Joint Surgery. British Volume 84, pp. 641-646.

    [28] Liao, L.D., Wang, M.C., Yu, C.C., 1999. Wear debris generated from a cup-on –ball hip wear simulator: their morphologies and compositions. Biomedical Engineering Applications, Basis and Communications 11, pp.129-138.

    [29] Litsky, A.S., Pophal, S.G., 1994. Initial mechanical stability of acetabular prostheses. Orthopaedics 17, pp. 53-57.

    [30] O’Toole, R.V., Jaramaz, B., Digioia, A.M., Visnic, C.D., Reid, R. H., 1995. Biomechanics for preoperative planning and surgical simulations in orthopaedics. Computer Biological Medicine 25, pp. 183-191.

    [31] Perona, P.G., Lawrence, J., Paprosky, W.G., Patwardhan, A.G., Sartori, M., 1992. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty. Journal of Arthroplasty 7, pp.537-547.

    [32] Pilliar, R.M., Lee, J.M., 1986. Observation on the effect of movement on bone ingrowth into poroussurfaced implants. Clinical Orthopaedics and Related Research 208, pp. 108-117.

    [33] Pilliar, R.M., 1980. Bony ingrowth into porous metal coated implants. Clinical Orthopaedics and Related Research 9, pp. 85-91.

    [34] Pedersen, D.R., Brand, R.A., Davy. D.T.,1997. Pelvic Muscle and Acetabular Contact Forces During Gait. Journal of Biomechanics Vol.30, pp. 959-965.

    [35] Rohrle, H., Scholten, R., Sigolotto, C., Sollbach, W., 1984. Joint forces in the human pelvis-leg skeleton during walking. Journal of Biomechanics 17, pp. 409-424

    [36] Rokkum, M., Brandt, M., Bye, K., Hetland, K.R., Waage, S., Reigstad, A., 1999. Polyethylene wear osteolysis and acetabular loosening with an HA-coated hip prosthesis. Journal of Bone and Joint Surgery. BritishVolume 81, pp. 582-589.

    [37] Scifert, C.F., Brown, T.D., Lipman, J.D., Tai, C.L., 1999.Finite element analysis of a novel design approach to resisting total hip dislocation.Clinical Biomechanics. 14, pp. 697-703.

    [38] Shih, C.H., Lee, P.C., Chen, J.H., Tai, C.L., Chen, L.F., Wu, J.S.S., Chang, W.H., 1997. Measurement of Polyethylene Wear in Cementless Total Hip Arthroplasty. Journal of Bone and Joint Surgery. British Volume 79, pp. 361-165.

    [39] Spears, I.R., Pfleiderer, M., Schneider, E., Hille, E., Bergmann, G., Morlock, M.M., 2000. Interfacial conditions between a press-fit acetabular cupo and bone during daily activities: implications for achieving bone in-growth. Journal of Biomecvhanics 33, pp. 1471-1477.

    [40] Spears, I.R., Pfleiderer, M., Schneider, E., Hille, E., Morlock, M.M., 2001. The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions A finite element investigation. Journal of Biomecvhanics 34, pp. 113-120.

    [41] Weinans, H., Huiskes, R., Grootenboer, H.J., 1993. Quantitative analysis of bone reactions to relative motions at implant-bone interfaces. Journal of Biomechanics 26, pp. 1271-1281.

    [42]Won, C.H., Hearn, T.C., Tile, M., 1995. Micromotion of cementless hemispherical acetabular components. Journal of Bone and Joint Surgery. British Volume 77, pp. 484-489.

    下載圖示 校內:立即公開
    校外:2003-07-23公開
    QR CODE