| 研究生: |
張誌暉 Chang, Chih-Hui |
|---|---|
| 論文名稱: |
以非真空法製備二硒化銅銦/硫硒化銅銦吸收層之研究 Investigation of CuInSe2/CuInSeS absorption layer by non-vacuum process |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 二硒化銅銦 、硫硒化銅銦 、硫化鋅 、奈米粉末 、薄膜 、溶熱法 、硫化法 、非真空製程 |
| 外文關鍵詞: | CuInSe2, CuIn(S,Se)2, solvothermal, sulfurization, sintering, Raman |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是以非真空法製備二硒化銅銦與硫硒化銅銦吸收層,且依其研究內容與發展順序共分為三個主題。首先為二硒化銅銦粉末合成之研究。此部分是採用溶熱法(Solvothermal)合成二硒化銅銦粉末,並針對合成條件影響其結晶相、型貌與顆粒大小進行探討。溶熱法所使用之溶劑為乙二胺(ethylenediamine)、二乙胺(diethylamine);所使用之反應物為氯化銅、氯化銦與硒粉。先將反應物與溶劑充分混合後置入鐵氟龍壓力容器中密閉,升溫150至200℃並持溫15至48小時。透過此法,所得之二硒化銅銦粉末的結晶相、型貌與顆粒大小均可獲得控制。第二部分為二硒化銅銦粉末之燒結研究。在此項目中,先製備二硒化銅銦粉末之糊劑(paste) ,再以刮刀法(Doctor blading)將粉末糊劑塗佈於基板上,然後置於硒蒸氣的氣氛中進行燒結。其中升溫速率、基板、燒結溫度、燒結氣氛與助燒劑(sintering aid)對於燒結結果之影響,將有詳盡之探討。在特定的燒結條件下,此法可成功製備連續緻密且單一相之二硒化銅銦薄膜。第三部分是對燒結後二硒化銅銦吸收層進行硫化(sulfurization),形成硫硒化銅銦(CuIn(S,Se)2)之四元化合物。研究結果發現其硫化效果與燒結後之二硒化銅銦吸收層條件有關,並影響其結晶相、拉曼光譜與成分。以有機化合物黏著劑(binder)調配的二硒化銅銦粉末糊劑,經過燒結後會有碳殘留於吸收層中,這樣含有殘碳的二硒化銅銦吸收層會使得硫化溫度大幅降低。反之,無碳殘留之二硒化銅銦吸收層,需較高之硫化溫度。此外,研究結果亦發現,硫化後的吸收層產生二硒化銅銦與二硫化銅銦兩相分離的現象。然而透過硫化條件之控制,最終可得單一相之硫硒化銅銦或二硒化銅銦與二硫化銅銦兩相的吸收層,且S/(S+Se)之成分亦比例可獲得控制。
There are three topics would be discussed in this dissertation. The first investigation was synthesis of crystalline chalcopyrite semiconductor CuInSe2 nanostructures which were preparing by solvothermal route. Effects of reaction time, reaction temperature, solvent type, and reactant concentration were studied. The results show that through selective processing conditions, the phase, morphology, and dimensions of the obtained CuInSe2 nanostructures can be controlled. Second, the powder of single crystal CuInSe2, synthesized by previous process, was sintered to form CuInSe2 films on glass and Mo-coated glass substrates in a horizontal furnace in the presence of Se vapors. Sintering time, temperature, and heating rate were varied to study the effects on the resulting film characteristics. It was found that the sintering is closely related to supply of the Se vapor to the samples while the Se supply depends on the sintering conditions and substrate type. Finally, the CuIn(S,Se)2 film was prepared by the sulfurization of CuInSe2 film obtained by sintering single crystal CuInSe2 powders. The sintering of CuInSe2 powders was performed with and without an organic binder. The sulfurization was performed in a sulfur vapor environment which was generated by heating sulfur powders. The effects of sulfurization time and temperature, and the amount of sulfur powders on the S/(Se+S) ratio and phase transformation were investigated. We show that the ratio of S/(Se+S) and phase transformation can be controlled such that film exhibiting either single CuIn(S,Se)2 phase or two separate CuInSe2 and CuInS2 phases can be obtained.
1. Komp RJ, Perlin J. Practical Photovoltaics Electricity from Solar Cells. 3rd ed: aatec; 2002.
2. 林明獻. 太陽電池-技術入門. 全華圖書; 2007.
3. Hahn H, Frank G, Klingler W, Meyer AD, Storger G. Untersuchungen Uber Ternare Chalkogenide .5. Uber Einige Ternare Chalkogenide Mit Chalkopyritstruktur. Z Anorg Allg Chem. 1953;271(3-4):153-170.
4. Tell B, Shay JL, Kasper HM. Room-Temperature Electrical Properties of 10 I-Iii-Vi2 Semiconductors. J Appl Phys. 1972;43(5):2469-2471.
5. Tell B, Shay JL, Kasper HM. Electrical Properties of I-Iii-Vi2 Compounds. B Am Phys Soc. 1972;17(3):304-306.
6. Tell B, Shay JL, Kasper HM. Electrical Properties, Optical Properties, and Band Structure of CuGaS2 and CuInS2. Phys Rev B. 1971;4(8):2463-&.
7. Wagner S, Shay JL, Migliora.P, Kasper HM. CulnSe2-CdS Heterojunction Photovoltaic Detectors. Appl Phys Lett. 1974;25(8):434-435.
8. Kazmerski LL, White FR, Morgan GK. Thin-Film Culnse2-Cds Heterojunction Solar-Cells. Appl Phys Lett. 1976;29(4):268-270.
9. R. A. Mickelsen, W. S. Chen. Development of a 9.4% efficient thin film CuInSe2/CdS solar cell. Proceedings of 15th IEEE Photovoltaic Specialists Conference; 1981; Orlando.
10. Mickelsen RA, Chen WS. Polycrystalline Thin-Film CuInSe2 Solar Cells. Paper presented at: Proceedings of 16th IEEE Photovoltaic Specialist Conference1982; San Diego.
11. Potter RR, Eberspacher C, Fabrick LB. Device analysis of CuInSe2/(Cd,Zn)S/ZnO solar cells. Paper presented at: Proceedings of 18th IEEE Photovoltaic Specialist Conference1985; Las Vegas.
12. Chen WS, Stewart JM, Stanbery BJ, Devaney WE, Mickelsen RA. Development of thin film polycrystalline CuIn1-xGaxSe2 solar cells. Paper presented at: Proceedings of the 19th Photovoltaics Specialist Conference1987; New Orleans.
13. Mitchell K, Eberspacher C, Ermer J, Pier D. Single and tandem junction CuInSe2 cell and module technology. Paper presented at: Proceedings of the 20th Photovoltaics Specialist Conference1988; Las Vegas.
14. Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schock HW. ZnO/CdS/CuInSe2 Thin-Film Solar-Cells with Improved Performance. Appl Phys Lett. Feb 8 1993;62(6):597-599.
15. Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog Photovoltaics. Nov 2011;19(7):894-897.
16. Hamakawa Y. Thin-film solar cells: next generation photovoltaics and its applications. Springer; 2004.
17. Shay JL, Tell B, Kasper HM, Schiavone LM. Electronic Structure of AgInSe2 and CuInSe2. Phys Rev B. 1973;7(10):4485.
18. Contreras MA, Ramanathan K, AbuShama J, et al. SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells. Progress in Photovoltaics: Research and Applications. 2005;13(3):209-216.
19. Philip Jackson, Würz R, Rau U, et al. High quality baseline for high efficiency, Cu(In1-x,Gax)Se2 solar cells. Progress in Photovoltaics: Research and Applications. 2007;15(6):507-519.
20. Huang CH. Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling. J Phys Chem Solids. Feb-Mar 2008;69(2-3):330-334.
21. Konovalov I. Material requirements for CIS solar cells. Thin Solid Films. Mar 22 2004;451:413-419.
22. Stanbery BJ, Davydov A, Chang CH, Anderson TJ. Reaction engineering and precursor film deposition for CIS synthesis. Paper presented at: National renewable energy laboratory and sandia national laboratories photovoltaics program review meeting1997; Lakewood, Colorado (USA).
23. Zhang SB, Wei SH, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys Rev Lett. May 26 1997;78(21):4059-4062.
24. Granath K, Bodegård M, Stolt L. The effect of NaF on Cu(In, Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells. 2000;60(3):279-293.
25. Romeo A, Terheggen M, Abou-Ras D, et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications. 2004;12(2-3):93-111.
26. Kronik L, Cahen D, Schock HW. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Adv Mater. Jan 2 1998;10(1):31-36.
27. Cahen D, Noufi R. Defect Chemical Explanation for the Effect of Air Anneal on CdS/CulnSe2 Solar-Cell Performance. Appl Phys Lett. Feb 6 1989;54(6):558-560.
28. Otte K, Makhova L, Braun A, Konovalov I. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application. Thin Solid Films. Jul 26 2006;511:613-622.
29. Kessler F, Rudmann D. Technological aspects of flexible CIGS solar cells and modules. Solar Energy. 2004;77(6):685-695.
30. Scofield JH, Duda A, Albin D, Ballard BL, Predecki PK. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films. 1995;260(1):26-31.
31. Assmann L, Bernede JC, Drici A, Amory C, Halgand E, Morsli M. Study of the Mo thin films and Mo/CIGS interface properties. Applied Surface Science. Jun 15 2005;246(1-3):159-166.
32. Abou-Ras D, Kostorz G, Bremaud D, et al. Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells. Thin Solid Films. Jun 1 2005;480:433-438.
33. Tsai W-J, Tsai C-H, Chang C-H, Ting J-M, Wang R-R. Addition of Na into CuInS2 thin film via co-evaporation. Thin Solid Films. 2010;519(5):1712-1716.
34. Eisele W, Ennaoui A, Schubert-Bischoff P, et al. New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells. Paper presented at: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE2000.
35. Gordillo G, Cediel G, Caicedo LM, Infante H, Sandino J. Study of optical, structural and morphological properties on Cd-free buffer materials. Paper presented at: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE2000.
36. Bhattacharya RN, Ramanathan K. Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS. Sol Energy. 2004;77(6):679-683.
37. Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films. 2005;480-481:99-109.
38. Kessler J, Ruckh M, Hariskos D, Ruhle U, Menner R, Schock HW. Interface engineering between CuInSe2 and ZnO Paper presented at: Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE1993.
39. Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schock HW. ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett. Feb 1993;62(6):597-599.
40. Friedlmeier TM, Braunger D, Hariskos D, Kaiser M, Wanka HN, Schock HW. Nucleation and growth of the CdS buffer layer on Cu(In,Ga)Se2 thin films. Paper presented at: Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE1996.
41. Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications. 2011;19(1):84-92.
42. Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications. 2011.
43. Contreras MA, Nakada T, Hongo M, Pudov AO, Sites JR. ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency. Paper presented at: Photovoltaic Energy Conversion, Proceedings of 3rd World Conference on; 11-18 May, 2003.
44. Lee JC, Kang KH, Kim SK, Yoon KH, Park IJ, Song J. RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications. Solar Energy Materials and Solar Cells. Sep 2000;64(2):185-195.
45. Xu XB, Huang SM, Chen YW, Sun Z, Huang SY. High-quality intrinsic ZnO film for the application of solar cell grown by ICP-assisted reactive DC magnetron sputtering at low temperature. Surface Review and Letters. 2007;14:1083-1087.
46. Yamaguchi T, Tanaka T, Yoshida A. Effect of substrate position in i-ZnO thin-film formation to Cu(In,Ga)Se2 solar cell. J. Vac. Sci. Technol. A-Vac. Surf. Films. Sep-Oct 2002;20(5):1755-1758.
47. Contreras MA, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ca)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics. Jul-Aug 1999;7(4):311-316.
48. Ramanathan K, Contreras MA, Perkins CL, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics. Jun 2003;11(4):225-230.
49. Jeong WJ, Kim SK, Park GC. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films. 2006;506:180-183.
50. Marudachalam M, Hichri H, Klenk R, Birkmire RW, Shafarman WN, Schultz JM. Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere. Appl. Phys. Lett. Dec 1995;67(26):3978-3980.
51. Cooray NF, Kushiya K, Fujimaki A, et al. Large area ZnO films optimized for graded band-gap Cu(InGa)Se2-based thin-film mini-modules. Solar Energy Materials and Solar Cells. Dec 1997;49(1-4):291-297.
52. 尤如瑾. 世界太陽光電產業與展望. 機械工業技術與市場資訊專輯. 2005;263:11.
53. Diehl W, Sittinger V, Szyszka B. Thin film solar cell technology in Germany. Surf Coat Tech. Apr 1 2005;193(1-3):329-334.
54. Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications. 2011
55. Adurodija FO, Song J, Kim SD, et al. Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container. Thin Solid Films. 1999;338(1-2):13-19.
56. Contreras MA, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics: Research and Applications. 1999;7(4):311-316.
57. Norsworthy G, Leidholm CR, Halani A, et al. CIS film growth by metallic ink coating and selenization. Solar Energy Materials and Solar Cells. 2000;60(2):127-134.
58. Eberspacher C, Fredric C, Pauls, Jack Serra K. Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films. 2001;387(1-2):18-22.
59. Kapur VK, Bansal A, Le P, Asensio OI. Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films. 2003;431-432:53-57.
60. Powalla M, Hariskos D, Lotter E, et al. Large-area CIGS modules: processes and properties. Thin Solid Films. 2003;431-432:523-533.
61. Karg FH. Development and manufacturing of CIS thin film solar modules. Solar Energy Materials and Solar Cells. 2001;66(1-4):645-653.
62. J. K. J. van Duren, C. Leidholm, A. Pudov, M. R. Robinson, Roussillon Y. High-performance thin-film photovoltaics using low-cost process technology. 17th International Photovoltaic Science & Engineering Conference, PVSEC-17; 2007; Fukuoka, Japan.
63. Chaure NB, Young J, Samantilleke AP, Dharmadasa IM. Electrodeposition of p-i-n type CuInSe2 multilayers for photovoltaic applications. Solar Energy Materials and Solar Cells. 2004;81(1):125-133.
64. Panthani MG, Akhavan V, Goodfellow B, et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics. J Am Chem Soc. Dec 10 2008;130(49):16770-16777.
65. Kaelin M, Rudmann D, Tiwari AN. Low cost processing of CIGS thin film solar cells. Sol Energy. 2004;77(6):749-756.
66. Hong SH, Gu SI, Shin HS, Yeo DH, Kim JH, Nahm S. Synthesis and Low-temperature Sintering of CuInSe2-CuGaSe2 Powders. J Korean Phys Soc. Oct 2010;57(4):1020-1023.
67. Guo Q, Kim SJ, Kar M, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. Sep 2008;8(9):2982-2987.
68. Kapur VK, Bansal A, Le P, Asensio OI. Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films. May 1 2003;431:53-57.
69. Gurin VS. Nanoparticles of ternary semiconductors in colloids: Low-temperature formation and quantum size effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998;142(1):35-40.
70. Grisaru H, Palchik O, Gedanken A, Palchik V, Slifkin MA, Weiss AM. Microwave-Assisted Polyol Synthesis of CuInTe2 and CuInSe2 Nanoparticles. Inorganic Chemistry. 2003;42(22):7148-7155.
71. Zhong H, Li Y, Ye M, et al. A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology. 2007;18(2):025602.
72. Wada T, Kinoshita H. Preparation of CuIn(S,Se)2 by mechanochemical process. Thin Solid Films. 2005;480-481:92-94.
73. Li B, Xie Y, Huang J, Qian Y. Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles. Advanced Materials. 1999;11(17):1456-1459.
74. Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials. 2007;53(2):117-166.
75. Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T. Solvothermal growth of ZnO. Progress in Crystal Growth and Characterization of Materials. 2006;52(4):280-335.
76. Lu WL, Fu YS, Tseng BH. Preparation and characterization of CuInSe2 nano-particles. J Phys Chem Solids. Feb-Mar 2008;69(2-3):637-640.
77. Li B, Xie Y, Huang JX, Qian YT. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles. Adv Mater. Dec 1 1999;11(17):1456-1459.
78. Yang YH, Chen YT. Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods. J. Phys. Chem. B. 2006;110(35):17370-17374.
79. Jiang Y, Wu Y, Mo X, Yu W, Xie Y, Qian Y. Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE2 (E = S, Se) Nanorods. Inorg. Chem. 2000;39(14):2964-2965.
80. Chun YG, Kim KH, Yoon KH. Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films. 2005;480-481:46-49.
81. Basol BM, Kapur VK, Leidholm CR, Halani A, Norsworthy G, Roe R. CIS-Type PV Device Fabrication by Novel Techniques. 1999. NREL/SR-520-26930.
82. Kaelin M, Rudmann D, Kurdesau F, Zogg H, Meyer T, Tiwari AN. Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films. Jun 1 2005;480:486-490.
83. Basol BM, Kapur VK, Norsworthy G, Halani A, Leidholm CR, Roe R. Efficient CuInSe2 Solar Cells Fabricated by a Novel Ink Coating Approach. Electrochemical and Solid-State Letters. 1998;1(6):252-254.
84. A. Vervaet, M. Burgelman, I. Clemminck, Casteleyn M. Screen Printing of CIS Films for CIS-CdS Solar Cells. 10th European Photovoltaic Solar Energy Conference; April 8-12, 1991; Lisbon, Portugal.
85. Van Duren JKJ, Leidholm C, Pudov A, Robinson MR, Roussillon Y. The next generation of thin-film photovoltaics. 2007; San Francisco, CA.
86. Hillhouse HW, Beard MC. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Curr Opin Colloid In. Aug 2009;14(4):245-259.
87. Kaelin M, Rudmann D, Kurdesau F, Meyer T, Zogg H, Tiwari AN. CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films. May 1 2003;431:58-62.
88. Casteleyn M, Burgelman M, Depuydt B, Clemminck I. Screen Printed and Sintered CuInSe2 Based Chalcopyrite Layers for Solar Cells. Paper presented at: 12th European Photovoltaic Solar Energy Conference1994; Amsterdam, The Netherlands.
89. Casteleyn M, Burgelman M, Depuydt B, Niemegeers A, Clemminck I. Growth Studies of CuInSe2 Using Cu-Se Fluxes. Paper presented at: First World Conference PEC; Dec. 5-9, 1994; Hawaii.
90. Adurodija FO, Carter MJ, Hill R. Synthesis and characterization of CuInSe2 thin films from Cu, In and Se stacked layers using a closed graphite box. Solar Energy Materials and Solar Cells. 1996;40(4):359.
91. Chang CH, Ting JM. Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process. Thin Solid Films. May 29 2009;517(14):4174-4178.
92. Stanbery BJ, Davydov A, Chang CH, Anderson TJ. Reaction engineering and precursor film deposition for CIS synthesis. AIP Conference Proceedings. 1997;394(1):579-588.
93. Contreras MA, Ramanathan K, AbuShama J, et al. Diode (characteristics in state-of-the-art ZnO/CdS/Cu(In(1-x)Gax)Se2 solar cells. Progress in Photovoltaics. May 2005;13(3):209-216.
94. Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A. Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization. Solar Energy Materials and Solar Cells. Dec 1997;49(1-4):285-290.
95. Nagoya Y, Kushiya K, Tachiyuki M, Yamase O. Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber. Solar Energy Materials and Solar Cells. Mar 2001;67(1-4):247-253.
96. Singh UP, Shafarman WN, Birkmire RW. Surface sulfurization studies of Cu(InGa)Se-2 thin film. Solar Energy Materials and Solar Cells. Mar 23 2006;90(5):623-630.
97. Alberts V, Titus J, Birkmire RW. Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenization/sulfurization of metallic alloys. Thin Solid Films. Mar 22 2004;451:207-211.
98. Engelmann M, McCandless BE, Birkmire RW. Formation and analysis of graded CuIn(Se1-ySy)2 films. Thin Solid Films. May 29 2001;387(1-2):14-17.
99. Sene C, Ndiaye B, Dieng M, Mbow B, Cong HN. CuIn (Se, S)2 based photovoltaic cells from one-step electrodeposition. Int J Phys Sci. Oct 2009;4(10):562-570.
100. Sheppard CJ, Alberts V. Deposition of single-phase CuIn(Se,S)2 thin films from the sulfurization of selenized CuIn alloys. J Phys D Appl Phys. Sep 7 2006;39(17):3760-3763.
101. Klenk R, Klaer J, Scheer R, et al. Solar cells based on CuInS2 - an overview. Thin Solid Films. Jun 1 2005;480:509-514.
102. Casteleyn M, Burgelman M, Depuydt B, Niemegeers A, Clemminck I. Growth Studies of CuInSe2 Using Cu-Se Fluxes. First WCPEC; Dec. 5-9, 1994; Hawaii.
103. Peng HL, Xie C, Schoen DT, McIlwrath K, Zhang XF, Cui Y. Ordered vacancy compounds and nanotube formation in CulnSe2-CdS core-shell nanowires. Nano Lett. Dec 2007;7(12):3734-3738.
104. Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE. Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science. Dec 15 1995;270(5243):1791-1794.
105. Taketoshi N, Baba T, Ono A. Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique. Meas Sci Technol. Dec 2001;12(12):2064-2073.
106. Yang LC. Sputtered epitaxial chalcopyrite CuInSe2 films grown on GaAs substrates. J Cryst Growth. Sep 4 2006;294(2):202-208.
107. Timmo K, Altosaar M, Kauk M, Raudoja J, Mellikov E. CuInSe2 monograin growth in the liquid phase of potassium iodide. Thin Solid Films. May 31 2007;515(15):5884-5886.
108. Koo B, Patel RN, Korgel BA. Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape. Journal of the American Chemical Society. 2009;131(9):3134-3135.
109. Ahn S, Kim C, Yun JH, et al. CuInSe2 (CIS) Thin Film Solar Cells by Direct Coating and Selenization of Solution Precursors. J Phys Chem C. May 6 2010;114(17):8108-8113.
110. Lee E, Park SJ, Cho JW, Gwak J, Oh MK, Min BK. Nearly carbon-free printable CIGS thin films for solar cell applications. Solar Energy Materials and Solar Cells. Oct 2011;95(10):2928-2932.
111. Lee MJ, Lee CB, Lee D, et al. Improved Resistive Switching Reliability in Graded NiO Multilayer for Resistive Nonvolatile Memory Devices. Ieee Electr Device L. Jul 2010;31(7):725-727.
112. Alvarez-Garcia J, Barcones B, Perez-Rodriguez A, et al. Vibrational and crystalline properties of polymorphic CuInC2 (C=Se,S) chalcogenides. Phys Rev B. Feb 2005;71(5).
113. Rincon C, Ramirez FJ. Lattice-Vibrations of CuInSe2 and CuGaSe2 by Raman Microspectrometry. J Appl Phys. Nov 1 1992;72(9):4321-4324.
114. Tanino H, Maeda T, Fujikake H, Nakanishi H, Endo S, Irie T. Raman-Spectra of Cuinse2. Phys Rev B. Jun 15 1992;45(23):13323-13330.
115. Tsai WJ, Tsai CH, Chang CH, Ting JM, Wang RR. Addition of Na into CuInS2 thin film via co-evaporation. Thin Solid Films. Dec 30 2010;519(5):1712-1716.
116. Titus J, Birkmire RW, Hack C, Muller G, McKeown P. Sulfur incorporation into copper indium diselenide single crystals through annealing in hydrogen sulfide. J Appl Phys. Feb 15 2006;99(4).