| 研究生: |
張瑜芬 Chang, Yu-Fen |
|---|---|
| 論文名稱: |
超聲波研究紫外線輻射對摻雜α-alanine 之 Triglycine Sulphate 之影響 Ultrasonic Study on Effects of Ultraviolet Irradiation on α-alanine Doped Triglycine Sulphate |
| 指導教授: |
田聰
Tien, Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 超聲波 、相變 |
| 外文關鍵詞: | α-alanine doped triglycine sulphate, ultrasound, phase transition |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,本實驗室建構一套精密之超聲波速度與衰減之量測系統,研究攙雜α-alanine 之 triglycine sulphate 晶體 (α-alanine-TGS) 在室溫及相變區之超聲波速度與衰減,將結果與無摻雜之 triglycine sulphate 晶體比較,發現有相異之處,其相異行為與參考文獻中之理論預測符合。接著我們將α-alanine-TGS 暴露在紫外線照射下達一定的能量密度,我們發現,相變區之超聲波衰減以及相變溫度沒有因紫外線輻射而有顯著改變,相變時超聲波速度陡升之高度亦無顯著的變化趨勢,表示本研究所用之紫外線能量密度到達9379(J/cm^2)時對以上這些特性不造成影響,然而發生超聲波速度陡升的溫度範圍隨著能量密度的增加而增加,此與參考文獻中γ射線造成晶體中的缺陷,而使相變現象改變之情形相似。
In our work, we constructed an ultrasonic system for studying the lattice structure of materials. We measured the velocity and the attenuation of ultrasound in α-alanine doped triglycine sulphate (shortly α-alanine-TGS) in the room temperature region and in the phase transition region. We found notable differences between the behavior of α-alanine-TGS and pure TGS, and they conform to the cited references. After applying ultraviolet irradiation, we measured the velocity and the attenuation of ultrasound in α-alanine-TGS in the phase transition region. The attenuation anomaly with respect to the temperature was without change, and the change of the magnitude of the velocity anomaly had no particular tendency. The phase transition temperature Tc of α-alanine-TGS crystal was not affected when the ultraviolet energy density reached 9379 (J/cm^2). We found that the width of the velocity anomaly increases with the irradiation energy density. This phenomenon is similar to the case of ferroelectrics being exposed to γ-irradiation.
[1] A. Galustian. Spectrosc. Lett. 6, 347 (1937).
[2] M. A. Gaffer, A. Auel-Fadl. Effect of Doping and Irradiation on Optical Parameters of Triglycine Sulphate Single Crystals. Cryst. Res. Technol., Vol. 34, number 7, pp. 915–923 (1999).
[3] E. A. Wood and A. M. Holden. Acta. Crystallogr. 10, 145 (1957).
[4] S. Hoshino, Y. Okaya and R. Pepinski. Phys. Rev. 115, 323 (1959).
[5] Y. Xu. Ferroelectric Materials and Their Applications. Elsevier Science. New York. Ch. 7, pp. 286-292 (1991).
[6] N. Nakatani. Jpn. J. Appl. Phys. 25, 27 (1986) and references therein.
[7] Subramanian Balakumar and Hua C. Zeng. Water-Assisted Reconstruction on Ferroelectric Domain ends of Triglycine Sulfate (NH2CH2COOH)3‧H2SO4 Crystals. J. Mater. Chem. 10, pp. 651-656 (2000).
[8] Blinc, M. Pintar and I. Zupancic. J Phys. Chem. Solids 28, 405 (1967).
[9] L. Santra, A. L. Verma, P. K. Bajpai, B. Hilczer, P. V. Huong. Ramam Spectroscopic Study of Alanine Doped Triglycine Sulphate Ferrosisctric Single Crystals. J. Phys. Chem. Solids, Vol. 55, No. 5, pp. 405-411 (1994).
[10] P. V. Huong and B. Hilczer. J. Chem. Phys. 72, 4412 (1980).
[11] J. Eisner. Ferroelectrics 17, 575 (1978).
[12] Z. Tylczynski. Acta Physica Polonica A58, (3), 275 (1980).
[13] M. Koralewski, W. Jachnik. Ferroelectrics (UK) 129, 165 (1992).
[14] W. Osak, K. Tkacz-Smiech, C. Strallkowska. Ferroelectrics (Switzerland) 158, 331 (1994).
[15] A. K. Batra , S. C. MathuR, Proc. Nucl. Phys. Solid State Phys. Symp. 21C, 294 (1978)
[16] M. A. Gaffar, G. F. Al-Noaimi, A. Abu El-Fadl. Journal of the physical society of Japan 58, 3392 (1989).
[17] M. A. Gaffer, A. Abu El-Fadl and S. A. Mansour. Journal of Physics D: Applied Physics 22, 327 (1989).
[18] M. A. Gaffar, M. M. Mebed, A. Abu El-Fadl. Phys. Stat. Sol. (a) 103, 459 (1987).
[19] M. A. Gaffar, M. M. Mebed, A. Abu El-Fadl. Phys. Stat. Sol. (a) 104, 879 (1987).
[20] A. Abu El-Fadl. Temperature Dependence of the Absorption Spectra and Optical Parameters in TGS and Cu2+-Doped TGS Crystals. Cryst. Res. Technol, Vol. 34, No. 8, pp. 1047–1054 (1999).
[21] Rohn Truell, Charles Elbaum and Bruce B. Chick. Ultrasonic Methods in Solid State Physics. Academic Press. New York. pp. 80-87 (1969).
[22] Noriyuki Nakatani. Growth of Various Amino-Acid-Doped Triglycine Sulfate Crystals and Their Ferroelectric Properties. Jpn. J. Appl. Phys., Vol. 32, pp. 4368-4271 (1993).
[23] P. J. Lock. Phys. Lett. (USA) 19, 390 (1971).
[24] C. Alemany, J. Mendiola, B. Jimenez and E. Maurer. Ferroelectrics 13, 487 (1976).
[25] B. Hilczer and M. Michalczyk. Ferroelectrics 22, 721 (1978).
[26] M. Amin and F.A. Mohsen. Proc. Math. Phys. Society Egypt 41, 59 (1976).
[27] S. R. Fletcher, A. C. Skapski and E. T. Keve. Crystallographic Studies of Irradiation/Field Treated Triglycine Sulphate: A New Structure Form. J. Phys. C: Solid State Phys. 4, No. 13, L255-L257 (17 September 1971).
[28] E.B. Peshikov. The Effect of Radiation on Ferroelectric. Izd. FAN, Tashkent (1972) (in Russian).
[29] B.A. Strukov, A.S. Sigov, V.A. Fedorikhin, S.A. Taraskin. Zh Eksper Teor Fiz, Posma 31, 184 (1980).
[30] B.A. Strukov, S.A. Taraskin, Z.V. Savilova, K.A. Minaeva. Ferroelectrics 96, 309 (1989).
[31] A.P. Levayuk, A.S. Sigov. Defects and Structural Phase Transition. Gordon and Breach. New York (1988).
[32] S.A. Taraskin, B.A. Strukov, V.A. Fedorikin, N.V. Belugina, V.A. Melkel. Fiz Tverd Tela 9, 2936 (1977).
[33] Yong Won Song, Jin Cheol Kim, In Kyu You, B.A. Strukov. Defects and Phase Transformation in TGSe and DTGSe Crystals. Materials Research Bulletin 35, pp. 1087-1096 (2000).
[34] B. A. Strukov, S. A. Taraskin, V. A. Meleshina, N. V. Belugina, and V. A. Yurin. Ferroelectrics 22, 727 (1978).
[35] G. Volkel, H. Schlemmbach. Rep. XVII, School on Ferroelectrics Physics, Borowice (1990).
[36] G. Montemezzani, J. Hulliger, P. Gunter, and J. Fousek. Phys. Stat. Sol. (a) 127, 529 (1991).
[37] Garl W. Garland (Warren P. Mason and R. N. Thurston Ed.). Physical Acoustics Ⅶ. Academic Press. New York and Landon. pp. 51-148 (1964).
[38] Heinrich Kuttruff. Ultrasonics Fundamentals and Applications. Elsevier Applied Science, London / Elsevier Science Pub. Co., New York (1991).
[39] A. B. Bhatia. Ultrasonic Absorption: an Introduction to The Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids. Dover Publications. New York (1985).
[40] L. D. Landau and I. M. Khalatnikov. Dokl. Akad. Nauk SSSR 96, 469 (1954).
[41] K. F. Herzfeld, T. A. Litovitz. Absorption and Dispersion of Ultrasonic Waves. Academic Press. New York. Sections 31 and 104 (1959).
[42] V. Janovec. J. Chem. Phys. 45, 1874 (1966).
[43] D. G. Sannikov. Soviet Phys.-solid State (English Transl.) 4, 1187 (1962).
[44] S. Ya. Geguzine and M. A. Krivoglaz. Soviet Phys.-solid State (English Transl.) 9, 2441 (1968).
[45] I. A. Yakovlev and T. S. Velichkina. Usp. Fiz. Nauk 63, 411 [Usp. Adv. Pys. Science (English Transl.) 63, 552] (1957).
[46] A. P. Levanyuk, K. A. Minaeva and B. A. Strukov. Soviet Phys.-solid State (English Transl.) 10, 1919 (1969).
[47] K. A. Minaeva and B. A. Strukov. Soviet Phys.-solid State (English Transl.) 8, 24 (1966).
[48] S. Ya. Geguzina and B. L. Timan. Soviet Phys.-solid State (English Transl.) 9, 1702 (1968).
[49] T. Ikeda, Y. Tanaka, H. Toyodo. Japan J. Appl. Phys. 1, 13 (1962).
[50] E. I. O’Brien and T. A. Litovitz. J. Appl. Phys. 35, 180 (1964).
[51] S. V. Pavlov. Investigation of Sound Absorption and Velocity at Frequency 120 MHz in TGS Near Phase Transition. Thesis. Moskva (1984).
[52] K. A. Minaeva and A. P. Levanyuk et al. Fiz. Tverd. Tela (USSR) 9, 1220, (1967).
[53] E.V. Charnaya, A. A. Kuleshov, A. K. Radzhabov, I. K. Rakhimov and L. A. Shuvalov. Frequency-Independent Order Parameter Relaxation Time in TGS Crystals. Ferroelectrics, Vol. 143, pp. 143-148 (1993).
[54] K. A. Minaeva, B. A. Strukov and K. Varnstorff. Soviet Phys.-solid State (English Transl.) 10, 1665 (1969).
[55] V. A. Shutilov, translated from the Russian by Michael E. Alferieff. Fundamental Physics of Ultrasound. Gordon and Breach Science Publishers. New York (1988).
[56] H. F. Pollard. Sound Waves in Solids. Pion. London (1977).
[57] 肖定全、王民編著,晶體物理學,四川大學出版、新華經銷,四川省,1989
[58] E. Dieulesaint, D. Royer ; translated by A. Bastin and M. Motz. Elastic Waves in Solids: Applications to Signal Processing. John Wiley & Sons. Chichester, New York, Brisbane, Toronto (1980).
[59] Z. Tylcynski. Acta Phys. Pol. A51, 249 (1977).
[60] J. Williams and J. Lamb. On The Measurement of Ultrasonic Velocity in Solids. The Journal of The Acoustical Society of America, Vol. 30, Number 4, April, pp. 308-313 (1958).
[61] K. S. Aleksandrov. Determination of The Elastic Moduli of a Monoclinic Crystal by the Impulsive Ultrasonic Method. Kristallografiya 3, No. 5, 623 (1958).