簡易檢索 / 詳目顯示

研究生: 邱鉦皓
Chiu, Cheng-Hao
論文名稱: 以氧化釩電容之電阻式記憶體元件與應用
Investigation of Vanadium Oxide Applied to Resistive Random Access Memory and Application
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 124
中文關鍵詞: 氧化釩非揮發性記憶體電阻式隨機存取記憶體
外文關鍵詞: Vanadium oxide, Nonvolatile memory (VNM), Resistance Random Access Memory (RRAM)
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用射頻磁控濺鍍法沉積五氧化二釩薄膜,討論在不同製程條件下薄膜的特性,並將此薄膜作為主動層應用於電阻式隨機存取記憶體中,研究元件開關電特性探討。
    首先以磁控濺鍍法在不同的製程條件下沉積五氧化二釩薄膜,並從四方向去討論氧化釩薄膜特性,分別是薄膜結構特性、薄膜光學特性、薄膜表面和縱深分析,以及薄膜熱電阻值分析。在結構特性上,氧化釩薄膜表面緻密且隨溫度上升有晶相產生。而在光學特性的部分,由於釩的能隙較小,有釩成分存在於薄膜時,使得薄膜成為一種低能隙的材料,主要吸收可見光波段,接著從熱實驗量測中證實,氧化釩薄膜為過渡金屬材料,具備金屬絕緣轉換機制,當薄膜經熱退火後,由TCR四點探針量測系統可見,當溫度高於攝氏60度時,可觀察電阻值變小,驗證熱對於氧化釩材料有一定程度的影響,進而推斷氧化釩是一種熱電材料。
    根據X光繞射分析儀(XRD)圖得知,薄膜經熱退火溫度250℃時,峰值有最強晶相(001),接著透過X射線光電子能譜(XPS)圖得知,薄膜中的氧空缺會由於製程中氧氣通入量以及特定回火溫度有所變動而有最佳參數。最後,為了能確切得知元件結構厚度,我們使用穿透式電子顯微鏡(TEM), 並從能量分散式光譜儀(EDS)得知各材料的組成原子比,並藉由原子力顯微鏡(AFM)量測,表面態密度越低使得薄膜表面越平滑,有助於改善元件表現。
    另一部分,本論文以W針/V2O5/Pt為架構電阻式隨機存取記憶體的製備方法與電特性探討,透過不同尺寸鎢針作為上電極製備記憶體,分析1μm以及5μm鎢針對於元件差異,兩者接能夠完成超過100次的操作開關元件,並且在0.1伏電壓下,有著超過10000秒的穩定記憶特性,以及具備雙極性電阻轉換特性。接者分析電流-電壓特性曲線,可以探討載子的傳導機制;在Set過程中,上電極施加正偏壓,使得主動層中薄膜的氧空缺排列形成導電燈絲,起初電壓電流呈現一次線性關係,初始為歐姆接觸(Ohmic)機制,接著逐漸增加電壓,電流反而趨漸平緩且與電壓平方成正相關,此傳導機制進入空間電荷限電流層(SCLC),最後當開路電壓到達VSet,導電路徑成功形成,元件進入導通電流態。相反地,當上電極施加負電壓時,電子注入薄膜與氧空缺結合,而當關閉電路到達VReset時,代表有足夠氧化還原能力,使得導通燈絲斷裂,元件回復到初始高阻態薄膜。
    最後,為了達到更小的開關路電壓,以及更穩定的高阻態與低組態之穩定性,我們研究以銀作為上電極之Ag/V2O5/Pt結構之電阻式記憶體開關元件。製備完成的元件,一樣表現出雙極性電阻轉換特性外,並有效降低開關電壓,且維持優良的記憶體開關比。主要是因為銀為高自由能材料,銀原子能擴散至薄膜內,當施加正偏壓下快速形成銀導通路徑,使得薄膜阻值處於低阻態位,反之當負偏壓施加後,銀原子經氧化還原後導通路徑斷裂,元件回復至高阻態,這意味著在不接觸薄膜表面下,銀電極不僅保護氧化釩表面並有著改善記憶體特性的重要方法之一。

    In this thesis, vanadium pentoxide (V2O5) is deposited by RF magnetron sputtering and the films’ properties are discussed thoroughly under different ambiences. Next, we will apply V2O5 thin films in Resistive Random Access Memory(RRAM) device to search electric characteristics and on /off switching performance.
    First, we utilize the RF-sputtering system to grow thin film with different condition and the films’ properties are researched into four aspects which are structural, optical analysis, surface/depth element analysis, and thermoelectric resistance transition analysis. The films are amorphous as-deposited and the crystalline phase gradually appears with the increasing of the annealing temperature. For the optical analysis, owing to the small bandgap of Vanadium, V2O5 thin films could be used as narrow bandgap material, absorbing in visible light. Since the heating experiment, we could observe the Vanadium oxide thin films, which is a transition metal with Metal-Insulator Transition (MIT) characteristics. Owing to measuring analysis of the heating temperature with the four probes of TCR analysis. When the temperature is over 60 degrees Celsius, the films resistance sharply decreases. The result proves that heating ambience impacts on the Vanadium material, and we could furtherly define vanadium oxide is a thermoelectric material.
    According to X-ray diffraction (XRD) analysis, the crystal phase corresponds to stronger phase (001) under annealing 250℃ ambience. Next, the XPS shows that the oxygen vacancies will be filled up with adjusting the best oxygen flow ratio and specific annealing temperature. For surface/depth element analysis, the TEM measurement could provide the accurate thickness and element dispersive spectrometer (EDS). Finally, we could observe the smooth surface of the films by AFM measurement. The results discuss the smooth surface with lower surface density of states, which is beneficial for the performance of the devices.
    In the second part of experiment, we fabricate the W-probe/V2O5/Pt and analyzed of the RRAM cell with different size of 1μm & 5μm W-probe electric performance. The fabricated device demonstrates over one hundred DC switching times and displays stable retention test for over 104s under 0.1 V stress that appears bipolar switching behavior. With I-V curves fitting method, we could find the conductive mechanism of the devices. While set process is firstly dominated by Ohmic conduction with stressed positive voltage, current is proportional to applied voltage and then forced the oxygen vacancies to grow up conductive filaments. Later, the current flatted happens at increasing the electric voltage, which transforms to the space charge limited conduction (SCLC) and changes current’s proportional to square of applied voltage in the high resistance state. Finally, conduction filaments successfully form and turn into low resistance state when applied voltage sweeps to VSET. On the contrary, the electron injects to fill up the oxygen vacancies by stressed negative voltage. As the off voltage is VRESET, which represents with stronger reduction-oxidation effect to cut down the filaments. This phenomenon causes to the film back to the high resistance state.
    Finally, in order to improve lower On/Off sweep voltage and stabilize high resistance state and low resistance state, we investigate the characteristics of top electrode structure: Ag/V2O5/Pt RRAM device. The fabricated device shows bipolar switching behavior as well. With stronger free energy, Ag atom could diffuse into the surface of thin film. As stressing the positive voltage, the Ag conductive bridge occurs to LRS. Conversely, compressing the negative voltage, Reduction-oxidation action forces to Ag atom returned back to the thin surface. The conductive bridge also breaks, so the film is back to HRS. It means Ag top electrode not only protects vanadium oxide film without contacting directly, but optimizes further on/off voltage and maintains good ratio of HRS/LRS. The Ag/V2O5/Pt structure reveals an important method to improve the characteristics of RRAM devices.

    Abstract (Chinese) I Abstract (English)……………………………………………… ..IV Acknowledge VII Contents IX Table Captions XIII Figure Captions………………………………………………….XV Chapter 1.Introduction…………………………………………....1 1.1 Background and Resistive Random Access Memory………..1 1.2 Background of VOx Material Introduction…………………..6 1.3 Organization of This Thesis………………………………...10 Reference…………………………………………………………..12 Chapter 2. Conductive Mechanism of RRAM………………….16 2.1 Introduction of Conductive Mechanism of Insulator……….16 2.2 Ohmic Conduction………………………………………….16 2.3 Space Charge Limited Conduction (SCLC)………...........…17 2.4 Schottky Emission……………………………………......…18 2.5 Poole Frenkel (PF) Emission………………………………..19 2.6 Fowler Nordheim (F-N) Tunneling and Direct Tunneling….20 Reference…………………………………………………………..22 Chapter 3. Experimental Equipment 25 3.1 Introduction of Experimental Equipment…………………...25 3.1.1. RF Sputtering System………………………………25 3.1.2. X-ray Diffraction Analysis (XRD)…………………27 3.1.3. Atomic Force Microscope (AFM)…………………29 3.1.4. X-ray Photoelectron Spectroscopy (XPS)………….30 3.1.5. Energy-dispersive X-ray Spectroscopy (EDS)……..31 3.1.6. Measurement Systems……………………………...32 Reference……………………………………………………33 Chapter 4. Fabrication and Characteristics of V2O5 thin films. 35 4.1 Growth of V2O5 Thin Film…………………………………35 4.2 X-ray Diffraction(XRD) Analysis…………………………..36 4.3 Atomic Force Microscopy (AFM) Analysis…………….......37 4.4 Optical Characteristics……………………………………...40 4.5 X-ray Photoelectron Spectroscopy (XPS) Analysis……...…42 4.6 EDS & TEM Analysis………………………………………49 4.7 Thermoelectric Analysis…………………………………….51 Reference…………………………………………………………..53 Chapter 5. Fabrication and Characteristics of V2O5 Resistive Random Access Memory 54 5.1 Fabrication and Measurement of V2O5 Random Resistive Access Memory……………………………………………..54 5.2 Transmittance Electron Microscope (TEM) Analysis……………………………………………………..55 5.3 Electric Properties of V2O5 RRAM with 5μm W Probe as top electrode…………………………………………………….59 5-3-1 Forming Voltage……………………………………59 5-3-2 I-V Sweep………………………………………......61 5-3-3 Endurance Analysis…………………………….......65 5-3-4 Retention Analysis………………………………….67 5-3-5 Stability Analysis: Cumulative Probability (CP Analysis)…………………………………………………..69 5.4 Electric Properties of V2O5 RRAM with 1μm W Probe as top electrode…………………………………………………….71 5-4-1 Forming Voltage……………………………………71 5-4-2 I-V Sweep…………………………………………..72 5-4-3 Endurance Analysis………………………………...76 5-4-4 Retention Analysis……………...………………….78 5-4-5 Stability Analysis: Cumulative Probability (CP Analysis)………………………………………………...….80 5.5 Electric Properties of V2O5 RRAM with Ag as top electrode.83 5-5-1 Fabrication of V2O5 Random Resistive Access Memory with Ag as top electrode…………………………...83 5-5-2 Transmittance Electron Microscope (TEM) Analysis85 5-5-3 Forming Voltage……………………………………86 5-5-4 I-V Sweep……………………………..……………88 5-5-5 Endurance Analysis………………………………...91 5-5-6 Retention Analysis……………………………….....93 5-5-7 Stability Analysis: Cumulative Probability (CP Analysis)……………………………………………………95 5.6 Compared to 1um,5um W Probe and Ag metal as top electrode of V2O5 RRAM performance……………………………….98 5-6-1 Forming Voltage……………………………………98 5-6-2 I-V Sweep…………………………………………..99 5-6-3 Endurance Analysis……………………………….103 5-6-4 Retention Analysis………………………………..105 5-6-5 Stability Analysis: Cumulative Probability (CP Analysis)…………………………………………………..107 5.7 Compared with the difference mechanisms of RRAM by W probe and Ag metal as top electrode………………………..110 5-7-1 Analyze electric mechanism of W probe as top Electrode…………………………………………………..110 5-7-2 Analyze electric mechanism of Ag metal as top Electrode…………………………………………………..113 Reference…………………………………………………………117 Chapter 6. Conclusion and Future Work……………………..118 6.1 Conclusion……………………………………………….118 6.2 Future Work……………………………………………...122 Reference………………………………………………………....123

    [1] R.F. Frietas and W.W. Wilcke, Storage-class memory: the next storage system technology, IBM J. of Res. and Dev., v. 25, p.439, 2008.
    [2] Hutchby J, Garner M. Assessment of the potential & maturity of selected emerging research memory technologies. Workshop & ERD/ERM Working Group Meeting (April 6-7, 2010).
    [3] Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater. 2007;6:833. doi: 10.1038/nmat 2023.
    [4] Wong HSP, Lee HY, Yu S, Chen YS, Wu Y, Chen PS, et al. Metal-oxide RRAM. Proc IEEE. 2012;100:1951.
    [5] Chen A, Haddad S, Wu YC, Fang TN, Lan Z, Avanzino S, et al. Non-volatile resistive switching for advanced memory applications. In: Tech. Dig.-Int. Electron Devices Meet., Washington, DC, MD, 2005, p. 746.
    [6] Prakash A, Jana D, Maikap S. TaOx-based resistive switching memories: prospective and challenges. Nanoscale Res Lett. 2013;8:418. doi: 10.1186/1556-276X-8-418.
    [7] G. Molas, G. Piccolboni, M. Barci, et al. Functionality and reliability of resistive RAM (RRAM) for non-volatile memory applications. IEEE, 2016, DOI: 10.1109/VLSI-TSA.2016.7480520.
    [8] Ting Chang Chang, Kuan Chang Chang, Tsung Ming Tsai, Tian Jian Chu and Simon M. Sze, Resistance random access memory, Mater. Sci., v. 19, Issue 5, pp. 254-264, 2016.
    [9] S. Yu, Overview of Resistive Switching Memory (RRAM) Switching Mechanism and Device Modeling, IEEE International Symposium on Circuits and Systems (ISCAS), 2014.
    [10] Wei-Kang Hsieh, Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices, Ph. D. disseration, NCKU, pp. 1-3, June 2016.
    [11] T. W. Hickmott, Low-frequency negative resistance in thin anodic oxide films, J. Appl. Phys., v. 33, 2669, 1962.
    [12] R. Waser and M. Aono, Nanoionics-based resistive switching 17 memories,Nature Mater., v. 6, pp. 833-840, 2007.
    [13] Konstantin V. Egorov, Dmitry S. Kuzmichev, Pavel S. Chizhov, Yuri Yu. Lebedinskii, Cheol Seong Hwang, and Andrey M. Markeev, In Situ Control of Oxygen Vacancies in TaOx Thin Films via Plasma-Enhanced Atomic Layer Deposition for Resistive Switching Memory Applications, ACS Appl. Mater. Interfaces, v.9 (15), pp. 13286–13292, 2017.
    [14] Wei-Kang Hsieh, Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices,Ph. D. disseration, NCKU, pp. 1-3, June 2016
    [15] Debanjan Jana, Sourav Roy, Rajeswar Panja,et al. Conductive-bridging random access memory: challenges and opportunity for 3D architecture, Nanoscale Research Letters, December 2015, 10:188
    [16] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng , Recent progress inresistive random access memories: Materials, switching mechanisms, and performance , Mater. Sci., v. 83, pp. 1-59, Sep. 2014.
    [17] J.-Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J.Chen, Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories , Nano Lett., v. 13 (8), pp. 3671–3677, 2013
    [18] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng , Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , Mater. Sci., v. 83, pp. 1-59, Sep. 2014.
    [19] Y.C. Yang, X.X. Zhang, M. Gao, F. Zeng, W.Y. Zhou, S.S. Xie, F.Pan, Nonvolatile resistive switching in single crystalline ZnO nanowires , Nanoscale, v. 3, pp. 1917-1921, 2011.
    [20] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng , Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , Mater. Sci., v. 83, pp. 1-59, Sep. 2014.
    [21] https://zh.wikipedia.org/wiki/File:Periodic-table.png
    [22] Appl. Phys. 8, (1969) 1008
    [23] Applied physics letters 90,(2007) 023515
    [24] Research progress of metal-insulator phase transition mechanism in VOx
    [25] K. Ravichandran, N.J. Begum, K. Swaminathan, B. Sakthivel, Fabrication of a double layered FTO/AZO film structure having enhanced thermal, electrical and optical properties, as a substitute for ITO films. Superlattices Microstruct. 64, 185–195 (2013)
    [26] Characterization of V2O5 nanorods grown by spray pyrolysis ,Technique, N. M. Abd Alghafour, Naser. M. Ahmed,Z. Hassan, Sabah M. Mohammad,M. Bououdina, M. K. M. Ali.
    [27] Y. Shenga´Hu, L. Qianga´Mai, Q. Yaoa´Zhu, Effect of modification by poly (ethylene oxide) on the reversibility of insertion/extraction of Li ion in V2O5 xerogel films. J. Mater. Chem. 12,1926–1929 (2002).
    [28] R.R. Kumar, B. Karunagaran, D. Mangalaraj, S.K. Narayandass, P. Manoravi, M. Joseph, V. Gopal, R. Madaria, J. Singh, Room temperature deposited vanadium oxide thin films for uncooled infrared detectors. Mater. Res. Bull. 38, 1235–1240 (2003).
    [29] E. Strelcov, Y. Lilach, A. Kolmakov, Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. Nano Lett. 9, 2322–2326 (2009).
    [30] C. Wu, H. Wei, B. Ning, Y. Xie, New vanadium oxide nanostructures: controlled synthesis and their smart electrical switchingproperties. Adv. Mater. 22, 1972–1976 (2010).
    [31] Analysis of the resistive switching behaviors of vanadium oxide thin film, Wei Xiao-Ying, Hu Ming, Zhang K Liang, Wang Fang, Zhao Jin-Shi, and Miao Yin-Ping.
    [32] J.-M. Li, K.-H. Chang, C.C. Hu, A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors. Electrochem. Commun. 12, 1800–1803 (2010).
    [33] L.M. Chen, Q.Y. Lai, H.M. Zeng, Y.J. Hao, J.H. Huang, Effects of various factors on capacitive properties of VOx_ nH2O powders in aqueous electrolyte. J. Appl. Electrochem. 41, 299–305 (2011).
    [34] Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538–1544.
    [35] Yu, L.E.; Kim, S.; Ryu, M.K.; Choi, S.Y.; Choi, Y.L. Structure Effects on Resistive Switching of Al/TiOx/Al Device for RRAM Applications. IEEE Electron Device Lett. 2008, 29, 331–333.
    [36] Ismail, M.; Huang, C.Y.; Panda, D.; Hung, C.J.; Tsai, T.L.; Jieng, J.H.; Lin, C.A.; Chand, U.; Rana, A.M.; Ahmed, E.; et al. Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 2014, doi:10.1186/1556-276X-9-45.
    [37] Murgatroyd, P.N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 1970, doi:10.1088/0022-3727/3/2/308.
    [38] Fang, R.; Chen, W.; Gao, L.; Yu, W.; Yu, S. Low Temperature Characteristics of HfOx-Based Resistive Random Access Memory. IEEE Electron Device Lett. 2015, 36, 567–569.
    [39] Chiu, F.C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, doi:10.1155/2014/578168.
    [40] Sharma, Y.; Pavunny, S.P.; Fachini, E.; Scott, J.F.; Katiyar, R.S. Nonpolar resistive memory switching with all four possible resistive switching modes in amorphous ternary rare-earth LaHoO3 thin films. 2015, arXiv: 1505.04690. arXiv.org e-Print archive. Available Online: http://www.arxiv.org/abs/1505.04690 (accessed 30 June 2015).
    [41] Simmons, J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793–1803.
    [42] Chiu, F.C.; Mondal, S.; Pan, T.M. Structural and Electrical Characteristics of Alternative High-k Dielectric for CMOS Application. In High-k Gate Dielectrics for CMOS Technology; He, G., Sun, Z.; Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 111–172.
    [43] Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey Electronics 2015, 4, 586-613; doi:10.3390/electronics4030586
    [44] Majkusiak, B.; Palestri, P.; Schenk, A.; Spinelli, A.S.; Compagnoni, C.M.; Luisier, M. Modeling and Simulation Approaches for Gate Current Computation. In Nanoscale CMOS; Balestra, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 213–257.
    [45] Zhu, Y.Q. Qian, H. Wang, L.F.; Wang, L Tang, J.Y. Measurement and analysis of substrate leakage current of RF mems capacitive switches. Microelectron Reliab. 2014, 54, 152–159.
    [46] W. T. Wu, “Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 74 pp, 2017.
    [47] Streetman, Ben G. and Sanjay Banerjee, Noise in Solid State Devices and Circuits. New Jersey: Prentice Hall, 1986.
    [48] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151–12155, 1998.
    [49] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., vol. 73, pp. 2146–2148, 1998.
    [50] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3/e. New York: McGraw-Hill, 2003.
    [51] J. L. Vossen and W. Kern, Thin Flim Processes. New York: Academic Press, 1978.
    [52] C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
    [53] C. I. Hsieh, “Investigation of P-type Tin Oxide Thin Film Transistors Fabricated by DC Sputtering System and Its Applications,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 75 pp, 2017.
    [54] L. Y. Chang, “Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 98 pp, 2017.
    [55] S. I. Shah, Handbook of Thin Film Process Technology. London: Institute of Physics Pub, 1995
    [56] N.M. Abd-Alghafour, Naser. M. Ahmed, Z. Hassa, Munirah Abdullah Almessiere, Hydrothermal Synthesis and Structural Properties of V2O5 Nanoflowers at Low Temperatures, IOP Conf. Series: Journal of Physics: Conf. Series 1083 (2018) 012036 doi :10.1088/1742-6596/1083/1/012036
    [57] Gang Gaoa,1, Lei Yangc,1, Bing Daia, Fei Xiaa,Investigation of the effect of annealing temperature on optical properties of lanthanum-oxide thin films prepared by sol-gel method, Surface & Coatings Technology 365 (2019) 164–172.
    [58] Boubacar Traore, Investigation of HfO2-based resistive RAM cells by electrical characterization and atomistic simulations, Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, Ph.D. Thesis, Oct. 2015.
    [59] C. B. Lee, B. S. Kang,A. Benayad, M. J. Lee, et al.,Effects of metal electrodes on the resistive memory switching propertyof NiO thin films, APPLIED PHYSICS LETTERS 93, 042115,2008, DOI: 10.1063/1.2967194
    [60] Huang, J. S.; Lin, Y. C.; Tsai, H. W.; Yen, W. C.; Chen, C. W.; Lee, C. Y.; Chin, T. S.; Chueh, Y. L. Bias Polarity-Induced Transformation of Point Contact Resistive Switching Memory from Single Transparent Conductive Metal Oxide Layer. Adv. Electron. Mater. 2015, 1, 1500061.
    [61] C. B. Leea, B. S. Kanga, A. Benayad, M. J. Lee, S.-E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo,Effects of metal electrodes on the resistive memory switching property of NiO thin films, Appl. Phys. Lett. 93, 042115 (2008), doi.org/10.1063/1.2967194
    [62] F. Yuan, Z. Zhang, L. Pan and J. Xu, A Combined Modulation of Set Current With Reset Voltage to Achieve 2-bit/cell Performance for Filament-Based RRAM,IEEE J. Electron Devices Soc., v. 2, pp. 154-157, 2014.
    [63] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories-Nanoionic mechanisms, prospects, and challenges,Adv. Mater., v. 21, n. 25–26, pp. 2632–2663, 2009.
    [64] J. Park et al., Multibit operation of TiOx-based ReRAM by schottky barrier height engineering, IEEE Electron Device Lett., v. 32, n. 4, pp. 476–478, Apr. 2011.
    [65] Cheng C H, Chin A and Yeh F S, Ultralow switching energy Ni/GeOx/HfON/TaN RRAM, IEEE Electron Device Lett., v. 32 , Mar. 2011.
    [66] Y. Wang et al., Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications, Nanotechnology, v. 21, n. 4, Jan. 2010.
    [67] Wei-Kang Hsieh, Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices,Ph. D. disseration, NCKU, p. 101, June 2016.
    [68] Won-Ho Lee, Eom-Ji Kim, and Sung-Min Yoon, Multilevel Resistive-Change Memory Operation of Al-Doped ZnO Thin-Film Transistor, IEEE Electron Device Letters, v. 37, i. 8, Aug. 2016.
    [69] Wei-Kang Hsieh, Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices, Ph. D. disseration, NCKU, p. 101, June 2016.
    [70] J.-B. Yang, T.-C. Chang, J.-J. Huang, Y.-C. Chen, Y.-T. Chen, H.-C. Tseng, A.-K. Chu, and S. M. Sze, Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors, Appl. Phys. Lett., v. 104, p. 153501, Apr. 2014.
    [71] Won-Ho Lee, Eom-Ji Kim, and Sung-Min Yoon, Multilevel Resistive Change Memory Operation of Al-Doped ZnO Thin Film Transistor, IEEE Electron Device Letters, v. 37, i. 8, Aug. 2016.

    下載圖示 校內:2024-07-03公開
    校外:2024-07-03公開
    QR CODE