| 研究生: |
林劭權 Lin, Shao-Chuan |
|---|---|
| 論文名稱: |
波浪通過沙漣底床邊界流之特性 Boundary Layer Flows Induced by Waves Propagating over Rigid Rippled Beds |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 沙漣 、波浪 、Navier-Stokes方程 、渦流 、邊界層 |
| 外文關鍵詞: | vorticity, vortex, boundary layer, waves, Navier-Stokes equations, rippled bed |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文發展數值模式求解二維時變的Navier-Stokes方程及完整的邊界條件,利用曲線座標系統模擬沙漣底床並探討波浪通過沙漣底床邊界層流之運動特性。數值模式與Marin (2004)的實驗結果比較相當一致。在確認模式的正確性後,本文以定性與定量的角度探討不同波浪條件與不同粗糙度下,沙漣底床附近流場特性,渦流的生成與消散,邊界層內水平速度運動特性。在相同沙漣底床下,隨波浪 數增加,渦流強度變化越急遽,波峰造成的順時針渦流強度大於波谷形成的逆時針渦流強度,而渦流中心移動軌跡也更趨於沙漣中心位置,顯示渦流影響範圍的擴大。在邊界層內水平速度部份,在相同沙漣底床下,回流隨波浪 數增加而影響變大,造成漣峯位置超射現象減弱,漣谷位置速度方向與邊界層外緣速度方向相反,此外在相同波浪條件下,沙漣尖銳度越大,底床速度受到回流抵銷的效果也越明顯。
A numerical scheme was developed to solve the unsteady, two-dimensional Navier-Stokes equations and complete boundary conditions for simulating the propagation of water waves over rigid rippled beds. A boundary-fitted coordinate system was used in this model. The accuracy of the numerical model was verified by comparing with the measurements of Marin (2004). Five numerical tests were carried out and discussed in qualitative and quantitative aspects, such as the velocity and vorticity fields, vortex shedding and characteristic of the horizontal velocity within the boundary layer. As the Ursell number increases under the same ripple geometry, the circulation changes rapidly and the negative vortex produced under the wave crest is stronger than the positive vortex formed under the wave trough. The horizontal velocity within boundary layer is counteracted by the reverse flow, and therefore the variation of velocity overshooting above the ripple crest is not obvious.
1. Admiraal, D., R. Musalem-Jara, M. Garcia and Y. Nino, “Vortex trajectory hysteresis above self-formed vortex ripples,” J. Hydraul. Res., Vol. 44, No.4, pp. 437-450, 2006.
2. Ardhuin, F., T. G. Drake and T. H. C. Herbers, “Observations of wave-generated vortex ripples on the North Carolina continental shelf,” J. Geophys. Res., Vol. 107, No. C10, pp. 7.1-7.14, 2002.
3. Bagnold, R. A. and Geoffrey Taylor, “Motion of waves in shallow water. Interaction between waves and sand bottoms,” Proc. R. Soc. A-Math. Phys. Eng. Sci., Vol. 187, No. 1008, pp. 1-18, 1946.
4. Blondeaux, P., “Sand ripples under sea waves, Part 1. ripple formation,” J. Fluid Mech., Vol. 218, pp. 1-17, 1990.
5. Chang, Y. S. and A. Scotti, “Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES),” J. Geophy. Res., Vol. 109, C09012, 2004.
6.Chen, C. J. and H. C. Chen, “The finite-analytic method”, Iowa Institute of Hydraulic Research, The University of Iowa., ⅡHR Report 232-Ⅳ., 1982.
7.Chen, H. C. and V. C. Patel, “Laminar flow at the trailing edge of a flat plate”, AIAA J., Vol. 25, pp. 920-928, 1987.
8.Davies, A. G. and C. Villaret, “Eulerian drift induced by progressive waves above rippled and very rough beds,” J. Geophy. Res., Vol. 104, pp. 1465-1488, 1999.
9.De Angelis, V., P. Lombardi and S. Banerjee, “Direct numerical simulation of turbulent flow over a wavy wall,” Phys. Fluids, Vol. 9, No. 8, pp. 2429-2442, 1997.
10.Du Toit, C. G. and J. F. A. Sleath, “Velocity measurements close to rippled beds in oscillatory flow,” J. Fluid Mech., Vol. 112, pp. 71-96, 1981.
11.Earnshaw, H. C. and C. A. Greated, “Dynamics of ripple bed vortices,” Exp. Fluid, Vol. 25, pp. 265-275, 1998
12.Fredsøe, J., K. H. Andersen and B. M. Sumer, “Wave plus current over a ripple-covered bed,” Coast. Eng., Vol. 38, pp. 177-221, 1999.
13.Grant, W. D. and O. S. Madsen, “Movable bed roughness in unsteady oscillatory flow,” J. Geophys. Res., Vol. 87, pp. 469-481, 1982.
14.Grasmeijer, B. T. and M. G. Kleinhans, “Observed and predicted bed forms and their effect on suspended sand concentrations,” Coastal Eng., Vol. 51, pp. 351-371, 2004.
15.Hara, T. and C. C. Mei, “Oscillating flows over periodic ripples,” J. Fluid Mech., Vol. 211, pp. 183-209, 1990.
16.Huang, C. J. and C. M. Dong, “Propagation of Water Waves over Rigid Rippled Beds,” J. Waterw. Port Coast. Ocean Eng., Vol. 128, pp. 190-201, 2002.
17.Huang, C. J., E. C. Zhang, and J. F. Lee, “Numerical stimulation of nonlinear viscous wavefields generated by Piston-type wavemaker,” J. Eng. Mech., Vol. 124, pp.1110-1120, 1998.
18.Hudon, J. D., L. Dykhno and T. J. Hanratty “Turbulence production in flow over a wavy wall,” Exp. Fluid, Vol. 20, pp. 257-265, 1996.
19.Hwung, H. H. and K. S. Hwang, “Flow structures over a wavy boundary in wave motion,” Proc., 9th Symp. on Turbulent Shear Flows, pp. 306-1 - 306-4, 1993.
20.Ikeda, S., K. Horikawa, H. Nakamura and K. Noguchi, “Oscillatory boundary layer over a sand ripple model,” Coast. Eng. Japan, Vol. 34, pp. 15-29, 1991.
21.Kaneko, A. and H. Honji, “Double structures of steady streaming in the oscillatory viscous flow over a wavy wall,” J. Fluid Mech., Vol. 93, pp. 727-736, 1979.
22.Kim, H., “Effective Form Roughness of Ripples for Waves,” J. Coast. Res., Vol. 20, pp. 731-738, 2004.
23.Lyne, W. H., “Unsteady viscous flow over a wavy wall,” J. Fluid Mech., Vol. 50, pp. 33-48, 1971.
24.Malarkey, J. and A. G. Davies, “Discrete vortex modelling of oscillatory flow over ripples,” Applied Ocean Res., Vol. 24, pp. 127-145, 2002.
25.Marin, F., “Eddy viscosity and Eulerian drift over rippled over beds in waves,” Coast. Eng., Vol. 50, pp. 139-159, 2004.
26.Nielsen, P., “Dynamics and geometry of wave-generated ripples,” J. Geophys. Res., Vol. 86, No. C7, pp. 6467-6472, 1981.
27.Nielsen, P., “Analytical determinationg of neashore wave height variation due to refraction shoaling and friction,” Coastal Eng., Vol. 7, pp. 233-251, 1983.
28.Ourmières, Y. and J. R. Chaplin, “Visualizations of the disturbed-laminar wave-induced flow above a rippled bed,” Exp. Fluid, Vol. 36, pp. 908-918, 2004.
29.Sato, S., K. Shimosako, and A. Watanabe, “Measurements of oscillatory turbulent boundary layer flow above ripples with a laser-doppler velocimeter,” Coast. Eng. Japan, Vol. 30, No.1, pp. 89-98, 1987
30.Tang, C.J., V. C. Patel, and L. Landweber, ”Viscous effects on propagation and reflection of solitary waves in shallow channels,” J. Comput. Phys., Vol. 88, No. 1, pp. 86-113, 1990.
31.Traykovski, P., A. E. Hay, J. D. Irish and J. F. Lynch, “Geometry, migration, and evolution of wave orbital,” J. Geophy. Res., Vol. 104, No. C1, pp 1505-1524, 1999.
32.Tunstall, E. B. and D. L. Inman, “Vortex generation by oscillatory flow over rippled surfaces,” J. Geophy. Res., Vol. 80, No. C24, pp. 3475-3484, 1975.
33.Vittori, G., “Non-linear viscous oscillatory flow over a small amplitude wavy wall,” J. Hydraulic Res., Vol. 27, pp. 267-280, 1989.
34.Vittori, G. and P. Blondeaux, “Sand ripples under sea waves, Part 2.Finite amplitude development,” J. Fluid Mech., Vol. 218, pp. 19-40, 1990.
35.Wiberg, P. L. and C. K. Harris, “Ripple geometry in wave-dominated environments,” J. Geophys. Res., Vol. 99, No. C1, pp. 775-790, 1994.
36.Williams, J. J., P. S. Bell, P. D. Thorn, N. Metje and E. Coates, “Measurement and prediction of wave-generated suborbital ripples,” J. Geophys. Res., Vol. 109, No. C2, p.p. C02004.1-C02004.18, 2004.
37.黃清哲、李兆芳、張恩誠,“平板單向移動所形成的自由液面及流場”,中華民國第十六屆海洋工程研討會論文集,B288-B309頁,1994。
38.黃惠欽,“Cn波在數值水槽中之生成與傳遞現象”,成功大學水利及海洋工程研究所碩士論文,2005。