| 研究生: |
鄭智羽 Cheng, Chih-Yu |
|---|---|
| 論文名稱: |
利用野外調查配合數值模擬探討伏流水層上湧下滲之分佈 Modeling the Distribution of Upwelling and Downwelling Areas in the Hyporheic Zone Using Field Investigation and Numerical Simulation |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 五溝水 、伏流水 、MODFLOW 、MT3D 、上湧下滲 |
| 外文關鍵詞: | Hyporheic, MODFLOW, MT3D, Upwelling and Downwelling |
| 相關次數: | 點閱:136 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來伏流水層在相關認知、學術研究以及水資源運用上的議題討論熱烈,不管對於經濟、環境以及生物相的影響都深具重要性。伏流水層的水文情況除了實地探測與調查外,更多情況為利用已知數據配合數值模式模擬更深層或更寬廣的未知伏流水層。台灣在伏流水的研究目前處於經濟考量居多,伏流水層對於生態以及環境之影響卻鮮少被人提及。
本研究經由野外調查獲取現地水文與地文資料,再透過數值模式模擬伏流水與地表水之間關係。數值模擬的過程中以MODFLOW建立穩態伏流水層模式,計算出五溝水地區之水頭、流場以及通量,再配合MT3D以溶質傳輸的方式將地表水與伏流水假設為特殊溶質,達到瞭解研究河段中上湧與下滲發生位置之目的。
透過MODFLOW模式中水收支的結果,可瞭解五溝水赤山新圳河川之淨通量約為0.0765 m3/day,表示此河段呈現水體增加的情況,但若將研究河段拉長至更下游的東港溪,淨通量即變為-0.0517 m3/day,表示從匯流口至東港溪會有大量水體的損失而離開地表水。在MT3D所產出結果中,模式模擬出上湧與下滲之位置與野外調查情況一致,以此方法能夠將原始採樣上湧與下滲的資料由‟點”分佈轉換為‟面”的形式分佈於全河段中,能夠更進一步在空間上對伏流水與地表水之間交換情況做出探討。
瞭解河段之中上湧與下滲區位後,在物理因子上可與潭瀨序列結合,例如在本研究河段中,深潭區容易在潭的首端發生上湧情況,而淺瀨區則是容易在瀨的首端發生下滲情況;化學因子上則可與水質資料配合,例如過往去多研究所提及的下滲處溶氧會較高。若能善加利用上湧與下滲對於溪流之影響,對於生態、環境以及工程三方面,都能提供一定的幫助。
In recent years, the hyporheic zone is getting more and more attention on extended knowledge, academic research, and water resources usage issues. It is of great importance to economic, environmental, biological phase. Besides field investigate, using known data for coordinate with numerical simulation to model deeper or wider unknown area is more often seen in the hyporheic zone. This study used field investigation to obtain hydrological and geographical information, then with the used of numerical simulation to model the correlations between surface water and hyporheic water. In modeling process, we used a three-dimensional MODFLOW model to simulate both hyporheic head and flux rate situation, and paired with MT3D to simulate the distribution of upwelling and downwelling area along a narrow stream. Modeling results in MODFLOW indicated that the net stream flux rate is 0.0765 m3/day, and surface water is gaining water at Wu Gou Shui Chihshan stream. If model boundary from Chihshan stream extended to Donggang River, the net stream flux rate is -0.0517 m3/day, and from junction to Donggang River surface water is losing water. Results from MT3D showed that the distribution of upwelling and downwelling area is the similar to our field investigated results. The difference is that model can help us to understand the distribution of ‘‘area’’; however, field investigation can only survey the distribution of ‘‘point’’ locations. The distribution of upwelling and downwelling areas can be easily combined with physical factors (e.g. pool-riffle sequence) and chemical factors (e.g. dissolved oxygen, DO). In this study, it showed that upwelling generally occurred at the beginning of pool, and downwelling occurred frequently at the beginning of riffle.
Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E., “Flow and storage in groundwater systems”, Science, 296.5575:1985-1990(2002)
Baxter, C. V., & Hauer, F. R., “Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus)”, Canadian Journal of Fisheries and Aquatic Sciences, 57.7:1470-1481(2000)
Baxter, C., Hauer, F. R., & Woessner, W. W., “Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity”, Transactions of the American Fisheries Society, 132(3), 493-502(2003)
Bencala, K. E., “Hyporheic zone hydrological processes”, Hydrological Processes, 14.15:2797-2798(2000)
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M., “The functional significance of the hyporheic zone in streams and rivers”, Annual Review of Ecology and Systematics, 29:59-81(1998)
Braja, M. D., & Siva S., “Introduction to Geotochnical Engineering”, pp88. (2015)
Brunke, M., & Gonser, T. O. M., “The ecological significance of exchange processes between rivers and groundwater”, Freshwater Biology, 37.1:1-33(1997)
Claret, C., Marmonier, P., & Bravard, J. P., “Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river”, Aquatic Sciences, 60.1:33-55(1998)
Faulkner, B. R., Brooks, J. R., Forshay, K. J., & Cline, S. P., “Hyporheic flow patterns in relation to large river floodplain attributes”, Journal of hydrology, 448, 161-173(2012)
Findlay, S., “Importance of surface‐subsurface exchange in stream ecosystems: The hyporheic zone”, Limnology and Oceanography, 40.1:159-164(1995)
Franken, R. J., Storey, R. G., & Williams, D. D. “Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream”, Hydrobiologia, 444(1-3), 183-195(2001)
Gibert, J., Mathieu, J., & Fournier, F. (Eds.), “Groundwater/surface water ecotones: biological and hydrological interactions and management options”, Cambridge: Cambridge University Press(1997)
Han, B., & Endreny, T. A., “Comparing MODFLOW simulation options for predicting intra‐meander flux”, Hydrological Processes, 28(11), 3824-3832 (2014)
Hanrahan, T. P., “Effects of river discharge on hyporheic exchange flows in salmon spawning areas of a large gravel‐bed river”, Hydrological Processes,22.1:127-141(2008)
Hester, E. T., Young, K. I., & Widdowson, M. A., “Controls on mixing‐dependent denitrification in hyporheic zones induced by riverbed dunes: A steady state modeling study”, Water Resources Research, 50(11), 9048-9066(2014)
Kasahara, T., & Hill, A. R., “Modeling the effects of lowland stream restoration projects on stream–subsurface water exchange”, Ecological Engineering, 32(4), 310-319(2008)
Lautz, L. K., & Siegel, D. I., “Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D”, Advances in Water Resources, 29(11), 1618-1633(2006)
Malard F., K. T., M. Dole-olivier, J. Mathieu & F. Stoch., “Sampling manual for the assessment of regional groundwater biodiversity fifth framework programme key action”, Global Change, Climate and Biodiversity Assessing and Conserving Biodiversity Contract, 2:1-21(2001)
Malard F., K. T., M. Dole-olivier & J. V. Ward., “A Landscape Perspective of Surface-subsurface Hydrological Exchanges in River Corridors”, Freshwater Biology, 47:621-640(2002)
Matula, S., Mekonnen, G. B., Báťková, K., & Nešetřil, K., “Simulations of groundwater-surface water interaction and particle movement due to the effect of weir construction in the sub-watershed of the river Labe in the town of Děčín”, Environmental monitoring and assessment, 186(11), 7755-7770(2014)
Mehl, S., & Hill, M. C., “Grid-size dependence of Cauchy boundary conditions used to simulate stream–aquifer interactions”, Advances in water resources, 33(4), 430-442(2010)
Meyer, E. I., Niepagenkemper, O., Molls, F., & Spänhoff, B., “An experimental assessment of the effectiveness of gravel cleaning operations in improving hyporheic water quality in potential salmonid spawning areas”, River Research and Applications, 24.2:119-131(2008)
Munz, M., Krause, S., Tecklenburg, C., & Binley, A. , “Reducing monitoring gaps at the aquifer–river interface by modelling groundwater–surface water exchange flow patterns”, Hydrological Processes, 25(23), 3547-3562(2011)
Naegeli, M. W., & Uehlinger, U., “Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river”, Journal of the North American Benthological Society, 794-804(1997)
Naiman, R. J., “The freshwater imperative: a research agenda”, Island Press(1995)
Olsen, D. A., & Townsend, C. R., “Hyporheic community composition in a gravel‐bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry”, Freshwater Biology, 48(8), 1363-1378 (2003)
Orghidan, T., “Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop”, Hydrobiology, 55:392-414(1959)
Palmer, M. A., Bely, A. E., & Berg, K. E., “ Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis ” , Oecologia, 89.2: 182-194 (1992)
Smock, L. A., Gladden, J. E., Riekenberg, J. L., Smith, L. C., & Black, C. R., “Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments”, Ecology, 876-886(1992)
Soulsby, C., Malcolm, I. A., Tetzlaff, D., & Youngson, A. F., “Seasonal and inter‐annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream”, River Research and Applications,25.10:1304-1319(2009)
Stein, H., Kellermann, C., Schmidt, S. I., Brielmann, H., Steube, C., Berkhoff, S. E. & Griebler, C., “The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality”, Journal of Environmental Monitoring, 12.1:242-254(2010)
Valett, H. M., Fisher, S. G., & Stanley, E. H., “Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream”, Journal of the North American Benthological Society, 201-215(1990)
Valett, H. M., Hakenkamp, C. C., & Boulton, A. J., “Perspectives on the hyporheic zone: integrating hydrology and biology”, Journal of the North American Benthological Society, 12(1), 40-43(1993)
Vervier, P., Gibert, J., Marmonier, P., & Dole-Olivier, M.-J., “A perspective on the permeability of the surface freshwater-groundwater ecotone”, Journal of the North American Benthological Society, 93-102(1992)
White, D. S., “Perspectives on defining and delineating hyporheic zones”, Journal of the North American Benthological Society, 61-69(1993)
Williams, D. D., & Hynes, H. B. N., “The occurrence of benthos deep in the substratum of a stream”, Freshwater Biology, 4.3:233-256(1974)
Wondzell, S. M., & Swanson, F. J., “Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream”, I: Hydrologic processes. Journal of the North American Benthological Society, 15(1), 3-19(1996)
Wondzell, S. M., & Swanson, F. J. (1996). “Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. II”, Nitrogen cycling. Journal of the North American Benthological Society, 15(1), 20-34.
Wondzell, S. M., LaNier, J., & Haggerty, R. (2009). Evaluation of alternative groundwater flow models for simulating hyporheic exchange in a small mountain stream. Journal of Hydrology, 364(1), 142-151.
Wondzell, S. M., LaNier, J., Haggerty, R., Woodsmith, R. D., & Edwards, R. T. (2009). Changes in hyporheic exchange flow following experimental wood removal in a small, low‐gradient stream. Water Resources Research, 45(5).
Wondzell, S. M. (2011). The role of the hyporheic zone across stream networks. Hydrological Processes, 25(22), 3525-3532.
Wyatt, K. H., Hauer, F. R., & Pessoney, G. F., “Benthic algal response to hyporheic-surface water exchange in an alluvial river”, Hydrobiologia, 607.1:151-161(2008)
丁澈士,屏東平原地下水補注之試驗研究(2/3),經濟部水利署2006年研究報告,(2006)
汪靜明,大甲溪水資源環境教育,經濟部水資局,(2000)
林于玄,應用微測壓管改良伏流水估算之水力傳導係數. 成功大學水利及海洋工程學系學位論文,1-64,(2016)
黃薇儒,屏東平原地下水鹽化情形探討,臺灣大學環境工程學研究所學位論文,1-109,(2006)
陳昀萱,屏東平元沿海地區鹽化問題之模擬及整治策略研究,成功大學水利及海洋工程學系學位論文,(2014)
葉柏緯,伏流水對魚類棲地之影響─ 以五溝水湧泉濕地為例,成功大學水利及海洋工程學系學位論文, 1-99,(2014)
游志弘,地表逕流與伏流水交換對水質特性相關性之探討,成功大學水利及海洋工程學系學位論文,(2014)
郭俊廷,伏流水與環境因子對底棲型鰕虎產卵之影響-以五溝水湧泉濕地為例 ,成功大學水利及海洋工程學系學位論文,(2015)
周思妤,澎湖地區地下水海水入侵之模擬與整治策略,成功大學水利及海洋工程學系學位論文, 1-89,(2016)
潘文健,屏東平原合適出水量分析之研究,成功大學資源工程學系學位論文, 1-120,(2002)
蘇清林,河畔取水所引致河川滲漏量之評估,成功大學資源工程學系學位論文, 1-112,(2007)