簡易檢索 / 詳目顯示

研究生: 賴建宇
Lai, Jian-Yu
論文名稱: 表面電漿效應產生增強穿透次波長狹縫的光波之侷限
Confinement of enhanced transmission light through a sub-wavelength slit due to surface plasma effect
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 72
中文關鍵詞: 表面電漿子次波長有限差分時域法
外文關鍵詞: Surface plasmon, Sub-wavelength, FDTD
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    The enhancement of light transmission through sub-wavelength slit is an interesting and important recent discovery in plasmonic nano-photonics. This is studied with our newly developed two dimensional simulation code of finite-difference time-domain method. The simulations verify the enhanced transmission that far exceeds the diffraction limit and help to understand in depth the resultant beaming of light that will be important in nano-optical applications. In fact, we have found some interesting physics for the enhanced transmission in addition to surface plasmon.
    The beaming of light is found due to the interference of the first order scattered light with the zeroth order transmitted light and is divergent with a finite angle. By proposing the interference between the zeroth and zeroth orders transmission light, we found the beamed light can be well confined. The dynamics and interesting physics of our new founding will be discussed.

    Page Abstract........................................I Acknowledgements...............................II Contents.......................................IV List of Tables and Figures.....................VI Chapters 1. INTRODUCTION.................................1 1.1 Surface Plasmon Polaritons (SPP)...................................1 1.2 Surface Plasmon Sub-wavelength Photonic Applications............................2 1.3 Phenomena that Light Pass through a Sub-wavelength Slit...................3 1.4 Thesis Organization.....................5 2. SIMULATION METHOD............................6 2.1 System..................................6 2.2 Simulation Model........................8 2.3 The Yee Algorithm......................10 2.4 Boundary Conditions....................16 2.5 Stability and Error Analysis...........27 2.6 Parallel Computation...................34 2.7 Hierarchical Data Format 5.............38 3. RESULTS AND DISCUSSION IN THE MICROWAVE REGION....................43 3.1 Dynamics of the Light Transmission and Dual Angles for a Given Wavelength.....43 3.2 De-coherence and Re-coherence of the Electric and Magnetic Fields near the Exit...................................50 3.3 Effect of the Exit Groove Width on the Enhanced Transmission...........55 4. RESULTS AND DISCUSSION IN THE VISIBLE LIGHT REGION................60 4.1 Confinement of Enhanced Transmission Light through a Sub-wavelength Slit....60 4.2 Physical Explanation...................65 5. CONCLUSION..................................71 5.1 Summary................................71 5.2 Further Work...........................72 Reference.......................................i Abbreviations and Glossary....................iii

    Reference

    [1] Ritchie, R. H., Plasma losses by fast electron in thin films, Phys. Rev. 106, 874 (1957).
    [2] R. W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Phil. Magm. 4, 396 (1902).
    [3] E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. 23A, 398 (1968).
    [4] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).
    [5] E. Yablonovitch, Photonic band structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295 (1991).
    [6] J. Pendry, Enhanced: playing tricks with light, Science 285, 5434 (2002)
    [7] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio & P. A. Wolff, Nature 391, 667 (1998).
    [8] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal & T. W. Ebbesen, Science 297, 820 (2002).
    [9] Zhijun Sun & Hong Koo Kim, Refractive transmission of light and beam shaping with metallic nano-optic lenses, Appl. Phys. Lett. 85, 642 (2004).
    [10] Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762 (2002).
    [11] K. Matsubara, S. Kawata & S. Minami, Appl. Opt. 27, 1160 (1998)
    [12] P. A. Hobson et al., Adv. Materials 14, 1393 (2002).
    [13] D. P. Tsai & W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000).
    [14] M. Ashino & M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998).
    [15] M. Westphalen et al. Solar Energy Materials and Solar Cells 61, 97 (2000).
    [16] D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, Adv. Materials 11, 860 (1999).
    [17] C. Haynes and R. P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003).
    [18] J. R. Sambles, Nature (London) 391, 641 (1998).
    [19] H. Kano and S. Kawata, Jpn. J. Appl. Phys. 34, 331 (1995)
    [20] W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature (London) 424, 824
    (2003).
    [21] Anatoly V Zayats and Igor I Smolyaninov, J. Opt. A 5, S16 (2003).
    [22] Sinclair S. Yee et al., Sensors and Actuators B 54, 3 (1999).
    [23] Luis Prill Sempere, Term paper for Physics of Nanostructures.
    [24] Bo Liedberg, Biosensors & Bioelectronics 10, i (1995).
    [25] H. A. Beth, Phys. Rev. 66, 163 (1944).
    [26] Liang-Bin et al., Phys. Rev. B 71, 041405 (2005).
    [27] F. J. Garcia-Vidal et al., Phys. Rev. Lett. 90, 213901 (2003).
    [28] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, Phys. Rev. Lett. 90, 167401 (2003).
    [29] F. J. Garcia-Vidal et al., Appl. Phys. Lett. 83, 4500 (2003).
    [30] S. Sena Akarca-Biyikli, Irfan Bulu, Ekmel Ozbay, Appl. Phys. Lett. 85, 1098 (2004).
    [31] A. Taflove and S. C. Hangess, “Computational Electrodynamics:The Finite-Difference Time-Domain Method”, 3nd ed. Boston, MA: Artech House, 2005.
    [32] D. M. Sullivan, IEEE Microwave Guided Wave Lett., 7, 184 (1997).
    [33] “MPI: A Message-Passing Interface Standard”, Online posting.
    6 August 1997.
    < http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html >
    [34] “What is HDF5? ”, Online posting. 25 April 2006.
    <http://hdf.ncsa.uiuc.edu/whatishdf5.html>
    [35] Eugene Hecht, “OPTICS”, 4th ed. Addison-Wesley, 2002

    下載圖示 校內:2009-08-31公開
    校外:2009-08-31公開
    QR CODE