簡易檢索 / 詳目顯示

研究生: 張家銘
Chang, Chia-Ming
論文名稱: 氧化鋅奈米棒陣列之合成與改質及其氣體感測特性
Preparation of ZnO Nanorod Arrays and Surface Modification for Gas Sensing Application
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 158
中文關鍵詞: 水溶液法氧化鋅奈米棒陣列表面修飾改質氣體感測元件光化學還原法
外文關鍵詞: Aqueous chemical growth, ZnO nanorod arrays, Surface modification, Gas sensing device, Photochemical reduction
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主軸是以各種化學溶液法(水溶液法、水熱法、光化學還原法)分別進行合成與表面修飾,於低溫下成長之高表面積比與高活性表面之氧化鋅奈米棒陣列,以製作各種還原性氣體感測元件。主要的目標為提高氣體之敏感度(sensitivity)、降低元件操作溫度(operating temperature)與偵測極限(detection limit)、減少反應以及回復時間(response and recovery time)和提高特定氣體之選擇性(selectivity)等。首先利用不同成長特性之化學溶液法或改變預沉積晶種的熱處理溫度,探討所成長氧化鋅奈米棒陣列的表面或內部缺陷特性及其所衍生的相關電特性對於氣體感測特性之影響。以強鹼水溶液溶蝕-成長交互作用的沉積合成富含表面缺陷(或能態密度)之氧化鋅奈米棒陣列,並以光致螢光光譜和其接面電子特性驗證。結果顯示,具有較多缺陷能階之氧化鋅,其表面有較高的載子濃度提供氣體感測過程中氧氣吸附之用,隨後反映在元件的電阻變化量上,因此乙醇氣體的敏感度即可藉由表面缺陷(氧空缺)數量的增進而提升。
    接著,以水熱法將金奈米粒子修飾氧化鋅奈米棒以提升元件表面的活性,透過適量奈米顆粒催化分解氧氣幫助其化學性吸附(溢流)作用,有效提高表面吸附氧的數量,進而增進元件對於乙醇氣體的感測敏感度約18倍;再加上由於不同氣體與吸附氧之間感測效率(電子捐輸作用)的差異,提高了氧化鋅奈米棒陣列對於乙醇/一氧化碳氣體感測的選擇性(selectivity)約12倍。過程中不同密度與大小之金奈米顆粒可藉由前驅物濃度加以控制,且可由結晶型態推論水熱法合成金奈米粒子的成長機制,並探討顆粒大小與分散性對於一氧化碳氣體感測的影響。隨後,藉由光化學還原的水溶液製程,在室溫下將鈀奈米顆粒修飾氧化鋅奈米棒陣列,以進一步增進一氧化碳氣體感測性能。金屬鈀的溢流效應提升氧化鋅表面化學吸附氧的數量達3倍以上,此化學敏化作用分別減少不同濃度一氧化碳氣體感測的反應與回復時間約4~12和1~2倍,並降低感測溫度至260 °C。而鈀粒子在氣體感測的過程中會產生 氧化還原耦合對,使得鈀與氧化鋅的界面生成一額外的蕭基式能障,顯著地提高元件的背景電阻並增大元件與氣體反應後的電阻變化量,提升一氧化碳氣體的敏感度5.6倍且降低該氣體的偵測極限至10 ppm。
    此外,利用具有螯合功能與自組裝特性的聚乙烯吡咯烷酮(PVP)作為載體,發展新穎的PVP輔助光化學還原法,除了能使受到光電子所吸引的鈀離子以較緩慢的速率移向氧化鋅表面進行還原,其疏水性聚乙烯基間的排斥作用避免奈米顆粒聚集形成團簇,有效調控鈀奈米顆粒於一維氧化鋅表面的生長形態與密度。固定前驅物濃度控制PVP的含量,即可調整鈀奈米粒子於氧化鋅上的沉積密度由14.3到3.1(單位面積, 15700 nm2)。而透過適當數量(14.3)的分離型鈀粒子修飾,元件於260 °C下對於500 ppm氫氣的感測敏感度可達1106,是未添加PVP製程所合成之團聚型鈀修飾元件的553倍。在室溫偵測的部分,其感測敏感度仍可達16.9,說明了此元件在室溫下即對於有爆炸安全疑慮的氫氣具有優異的敏感性。最後也藉由數據的分析以及與相關文獻的探討,提出了不同溫度區間的氫氣感測機制,包括一般200-300 °C的氧氣吸/脫附模式、60-120 °C的表面電導模式以及室溫下(約25-30 °C)的氫化鈀(PdHx)轉換模式。

    The main target in this dissertation is aimed at fabricating high-performance gas sensors based on the ZnO nanostructuers with high surface area and active surface configuration. For this object, it is devoted to raise the gas sensitivity, sensing kinetics, selectivity to specific analyte and lower the operating temperature via several wet chemical processes composed of alkali solution growth, hydrothermal route and photochemical reduction. The substantial proceedings include fabrication and surface modification of ZnO nanorod arrays (NRs) as well as analysis of relevant physical and chemical properties, and sequentially put them to different gases sensing applications.
    The ZnO NRs grown with Zn salt/KOH solution have a larger amount of surface defects (or surface states) than that grown with Zn salt/HMTA solution by its dissolution-growth behavior, which is verified by the photoluminescence analysis and the interfacial electrical characteristics between sputtering Au films and ZnO nanorods. It incurs a superior C2H5OH sensitivity in the former structure because more oxygen vacancy induces more free carriers for gas sensing reaction.
    The Au nanonanoparticles with different size and density are loaded on the ZnO NRs by tuning the reactant (HAuCl4) concentration within hydrothermal procedure; moreover, the growth behavior and mechanism of those Au nanocrystals on ZnO surface are proposed and clearly elucidated. The enhancing surface activity may increase the number of chemisorbed oxygen on ZnO NRs by adequate Au decoration, and then the sensitivity to 600 ppm C2H5OH can be promoted higher than 18-fold. Furthermore, the selectivity for 600 ppm C2H5OH/CO (Sethanol/Scarbon monoxide) also can be enhanced more than 12-fold due to the discrepancy in electron donating effect of different analytes. In order to improve the CO gas sensing property, the Pd nanoparticles are attached on the surface of ZnO nanorods by photochemical deposition (PCD) at room temperature with ultraviolet (UV) light. After that, the sensitivity to 600 ppm CO of Pd decorated ZnO NRs (Pd/ZnO NRs) is increased about 6 times as compared with the pristine ZnO NRs, and the detection limit is reduced to 10 ppm. This improvement is ascribed to an enlargement of the difference in Schottky barrier height between Pd-ZnO while the transition between metallic Pd and redox couple is accompanied by work function variation. Besides, the number of chemisorbed oxygen on Pd/ZnO NRs is promoted more than 3-fold because of the catalytic Pd acting as a promoter of oxygen adsorption on the ZnO surface by spillover effect, which facilitates the sensing reaction and consequently decreases the response/recovery time as well as the optimum operating temperature.
    For the sake of resolving the issue of Pd aggregation on ZnO surface, the PVP polymer (polyvinylpyrrolidone) possessed of chelating property and self-assembly characteristic (or called spatial effect) is introduced to the PCD. Thus one-step decoration of nearly monodispersed Pd nanoparticles with controllable density (14.3-3.1/unit area) on ZnO nanorods can be achieved by tailoring the mole ratio of reactant (PdCl2) to PVP (from 45 to 3) in this unique PVP-mediated photochemical reduction. It is demonstrated that the electron sensitization related to the transition of redox couple predominates the H2 sensing mechanism of Pd/ZnO NRs at 200-300 °C. As a consequence, the gas sensitivity to 500 ppm H2 of Pd/ZnO NRs is remarkably improved by around 553-fold (Ra/Rg=1106) at 260 °C through decorating 14.3 (/unit area) discrete Pd nanoparticles instead of the Pd clusters. Furthermore, the corresponding sensitivity at room temperature is 16.9 that is superior to some promising devices like Pd decorated multilayer graphene nanoribbon (Pd-MLGN) or Pd nanotube arrays, which manifests the outstanding H2 sensing performance in the specific Pd/ZnO NRs.Therefore, the present Pd/ZnO NRs have a giant potential and advantage for being applicable to the H2 gas sensor even at the room temperature. Eventually, the diverse H2 sensing mechanisms are proposed based on the Pd density dependence of sensitivity variation in those Pd/ZnO NRs at different temperature regions.

    總目錄 摘要 I Abstract III 致謝 V 總目錄 VI 圖目錄 IX 表目錄 XVII 中英名詞與符號對照表 XVIII 第一章 緒論 1 1-1引言 1 1-2研究動機與目的 4 第二章 理論基礎與文獻回顧 7 2-1氣體吸/脫附理論[14] 7 2-1-1 物理性吸附 7 2-1-2化學性吸附 9 2-1-3吸附等壓線 11 2-2化學阻抗感測器工作原理 14 2-2-1典型氣體感測模式 14 2-2-2氣體感測元件效能參數 20 2-2-3提升氣體感測效能 21 2-2-4電子敏化作用 22 2-2-5化學敏化作用 25 2-2-6表面修飾金屬奈米顆粒之製程 27 2-3 ZnO的性質與製程技術 30 2-3-1 ZnO的晶體結構與性質 30 2-3-2一維ZnO奈米結構 31 2-3-3一維ZnO奈米結構的合成方法 33 2-3-4水溶液合成一維氧化鋅奈米結構 34 2-3-5 ZnO基氣體感測元件 37 第三章 實驗步驟與方法 41 3-1 實驗流程 41 3-2 實驗藥品 42 3-3 基板製備 43 3-4水溶液法合成ZnO 奈米棒陣列結構 45 3-4-1 種晶層製備 45 3-4-2水溶液法的製程設備、實驗步驟與參數設定 45 3-5 水熱法沉積Au奈米顆粒於ZnO奈米棒陣列 46 3-5-1水熱法設備、合成步驟與參數設定 46 3-6 光化學還原法沉積Pd奈米粒子於ZnO奈米棒陣列 47 3-7材料分析與元件特性量測 49 3-7-1 X光繞射分析(XRD) 49 3-7-2掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM) 49 3-7-3光致發光光譜(PL)與X光光電子能譜儀(XPS) 49 3-7-4紫外光-可見光光譜儀(UV-Visible)與傅立葉轉換紅外線光譜儀(FT-IR) 50 3-7-5 氣體感測元件特性分析 50 第四章 結果與討論 53 4-1 ZnO奈米棒陣列表面缺陷特性及其對乙醇感測之影響 53 4-1-1 ZnO種晶薄膜與奈米棒陣列之形貌與晶體結構 53 4-1-2 ZnO種晶薄膜與奈米棒陣列之乙醇氣體感測特性 58 4-1-3 ZnO奈米棒陣列之光學特性分析 59 4-1-4 ZnO奈米棒陣列之電特性及相關感測機制 63 4-2 ZnO奈米棒陣列之結構與缺陷特性及其對一氧化碳感測的影響 66 4-2-1 種晶熱處理溫度對奈米棒陣列之表面形貌的影響 67 4-2-2 種晶熱處理溫度對奈米棒陣列之結構與發光特性的影響 68 4-2-3 種晶熱處理溫度對奈米棒陣列電特性之影響 73 4-2-4 種晶熱處理溫度對奈米棒陣列一氧化碳氣體感測的影響 74 4-3 Au奈米顆粒修飾ZnO奈米棒陣列之氣體感測特性 80 4-3-1 金氯酸濃度對於Au/ZnO奈米棒陣列表面形貌的影響 81 4-3-2 金氯酸濃度對於Au/ZnO奈米棒之組成與晶體結構的影響 83 4-3-3 金氯酸濃度對於Au/ZnO奈米棒陣列之一氧化碳感測的影響 88 4-3-4 Au/ZnO奈米棒陣列應用於不同還原性氣體的感測特性 93 4-4 Pd奈米顆粒修飾ZnO奈米棒陣列之氣體感測特性 96 4-4-1 Pd奈米顆粒修飾於奈米棒陣列之表面形貌及其成長機制 97 4-4-2 Pd奈米顆粒修飾於ZnO奈米棒之晶體結構與表面化學特性 100 4-4-3 Pd奈米顆粒修飾奈米棒陣列之一氧化碳感測性能與機制 105 4-5 Pd修飾密度對於ZnO奈米棒陣列之氫氣感測特性 110 4-5-1 PVP數量對於Pd/ZnO奈米棒陣列之表面形貌與Pd修飾密度的影響 111 4-5-2 PVP輔助光化學還原製備Pd/ZnO奈米棒之光學特性分析 119 4-5-3 PVP輔助光化學還原製備Pd/ZnO奈米棒陣列之成長機制 121 4-5-4 Pd密度對於Pd/ZnO奈米棒陣列之氫氣感測效能的影響與感測機制探討 125 第五章 結論 136 第六章 參考文獻 139 圖目錄 Fig. 2-1 The five types of physisorption isothermas[16]. (a) Langmuir isotherm-adsorption limited to a single monolayer, (b) BET approximation- mutilayer adsorption, (c) interaction between first layer and substrate is much weaker than the interaction between the second and first layer, (d) similar to Langmuir isotherm, but with two limitations of the volume adsorbed and (e) combines low sorbent/adsorbate interaction (III) and limited adsorption (I). 10 Fig. 2-2 The energy of the system versus distance of the adsorbate from the surface:(a) adsorption as molecule, (b) adsorption as two atoms [14]. 10 Fig. 2-3 The adsorption isobar (adsorption at constant pressure): (a) physisorption, (b) nonequilibrium chemisorption where the volume adsorbed depends on history, and (c) equilibrium chemisorption [14]. 13 Fig. 2-4 Receptor and transducer function of a semiconductor gas sensor: (a) surface, providing the receptor function, (b) microstructure of the sensing layer, providing the transducer function, and (c) element, enabling the detection of the change in output resistance of the sensing layer, here deposited on an interdigital microelectrode [18]. 16 Fig. 2-5 Simplified model illustrating band bending in a wide band gap semiconductor after chemisorption of charged species (here the ionosorption of oxygen) on surface sites. , , and and denote the energy of the conduction band, valence band, and the Fermi level, respectively, while denotes the thickness of the space-charge layer, and the potential barrier. The conducting electrons are represented by and + represents the donor sites [18]. 16 Fig. 2-6 Energy diagram of various oxygen species in the gas phase, adsorbed at the surface and bound within the lattice of a binary metal oxide [24]. 19 Fig. 2-7 Structural and band model showing the role of intergranular contact regions in determining the conductance over a polycrystalline metal oxide semiconductor: (a) initial state, and (b) effect of CO on and for large grains [18]. 19 Fig. 2-8 Structural and band model for particles with D ‹‹ 2 leading to the so-called “flat-band”case: (a) the initial state, and (b) the effect of CO on the position of the conduction band [18]. 23 Fig. 2-9 Mechanism of sensitization by metal or metal oxide additives: (a) electronic sensitization, where the additive is an acceptor for electrons and the redox state/chemical potential is changed by reaction with the analyte; (b) chemical sensitization by activation of the analyte (H2) followed by spill over and change of the surface oxygen concentration [18]. 23 Fig. 2-10 Crystal structure of wurtzite ZnO [70]. 32 Fig. 2-11 Schematic diagram of the ZnO nanowire surrounded by (a) air and (b) ethanol gas [109]. 40 Fig. 3-1 The flow chart of experiment for growth of ZnO nanorod arrays and sequential decoration of noble metal in order to fabricate high performance ZnO-based gas sensing device. 41 Fig. 3-2 Schematic diagram of the configuration of the ZnO-based gas sensing device. 44 Fig. 3-3 Schematic illustration of (PVP-mediated) photochemical deposition (PCD) of Pd nanoparticles on ZnO nanorod arrays. 48 Fig. 3-4 Schematic diagram of gas sensing equipment. 52 Fig. 3-5 Schematic diagram of gas detection system. 52 Fig. 4-1 SEM top-view images of (a) ZnO seed layer fabricated by spinning 2.0M sol-gel and annealing at 300 °C for 1hr, (b) ZnO nanorod arrays grown with Zn salt/HMTA solution composed of 0.025 M Zn(NO3)2 and HMTA at 95 °C for 3hr, (c) ZnO nanorod arrays grown with Zn salt/KOH solution by mixing 0.5 M Zn(NO3)2 and 4 M KOH with 1:1 volume ratio at room temperature for 10 min. The insert is cross-sectional view of the ZnO seed layer and ZnO nanorod arrays 55 Fig. 4-2 XRD spectra of the ZnO seed layer, ZnO nanorod arrays grown with Zn salt/HMTA system at 95 °C for 3hr and Zn salt/KOH solution at room temperature for 10 min, respectively. 56 Fig. 4-3 (a) TEM image and (b) the corresponding SAED-pattern of ZnO nanorod fabricated by the Zn salt/KOH solution by mixing 0.5 M Zn(NO3)2 and 4 M KOH with 1:1 volume ratio at room temperature for 10 min. 57 Fig. 4-4 (a) Time dependence of resistance change of ZnO-based sensing devices as the gas ambient is switched from air to air-ethanol (600 ppm) mixed gas and back to air at 300 °C. (b) The variation of resistance in ZnO NRs grown with Zn salt/KOH solution as gas switched from air to various concentrations of ethanol in air (100-600 ppm) as time proceeds at 300 °C. 61 Fig. 4-5 Room-temperature photoluminescent spectra of the ZnO nanorod arrays grown with Zn salt/HMTA and Zn salt/KOH solutions, respectively. 62 Fig. 4-6 I-V curves of M-S contact in the ZnO nanorod arrays grown with Zn salt/HMTA and Zn salt/KOH solutions, respectively. The upper inset is enlarged I–V curves in the low voltage range. The lower insert shows schematic structure configuration of the M-S (Au-ZnO) contact. 65 Fig. 4-7 Schematic diagram of the M-S contacts of the ZnO nanorod arrays grown with Zn salt/HMTA and Zn salt/KOH solutions, respectively. (The , , and and are respectively the codes for the energy of conduction band, valence band and Fermi level.) 65 Fig. 4-8 HR-SEM images of ZnO nanorod arrays grown with sol-gel seed layer annealed at (a) 300 °C (b) 400 °C (c) 500 °C (d) 600 °C (e) 700 °C for 1 hr. The insert is cross-sectional view of the corresponding ZnO nanorod arrays. (f) XRD spectra of the ZnO seed layer annealed at different temperatures. 70 Fig. 4-9 (a) The variation of diameter, length and density of ZnO nanorods grown on seed layer annealed at various temperatures. (b) Room-temperature PL analysis of ZnO nanorod arrays grown with seed layer annealed at 300 °C~700 °C. 71 Fig. 4-10 The variation of surface area and integrated / ratio in ZnO nanorod arrays grown with the seed layer annealed at different temperatures. 75 Fig. 4-11 I-V characteristics of ZnO NRs gas sensors grown on different seed layers annealed at 300 °C~700 °C. (The data are measured by the interdigital electrodes (I. E.) under the sensing elements.) 75 Fig. 4-12 (a) Time-dependent resistance change of different ZnO NRs gas sensors as the ambient gas is switched from air to various concentrations (100 ppm~600 ppm) of air-carbon monoxide mixed gas alternately at 300 °C. (b) The variation in sensitivity with ZnO NRs grown with seed layers annealed at different temperatures (exposed to several concentrations of air-carbon monoxide mixed gas at 300 °C). 76 Fig. 4-13 (a) The XPS of the O 1s core levels obtained from ZnO nanorod arrays prepared with seed layers annealed at 400, 500 and 600 °C. (b) The variation of integrated area ratio of O3 peak and the chemisorbed oxygen area in those ZnO NRs with the seed layer annealed from 300 °C to 700 °C. 79 Fig. 4-14 Top-viewed and cross-sectioned SEM images (BSE inset in the right half) of (a)(b) pristine ZnO nanorod arrays and Au/ZnO NRs produced from (c)(d) 0.125 mM, (e)(f) 0.25 mM, (g)(h) 0.5 mM and (i)(j) 1.5 mM HAuCl4 solution. 82 Fig. 4-15 XRD spectra of the pristine ZnO nanorod arrays and Au/ZnO NRs produced with different concentrations (0.125 mM-1.5 mM) of HAuCl4 solution. 84 Fig. 4-16 Typical TEM and HR-TEM images (insets are the diffraction patterns and Fast Fourier transforms of the corresponding Au or ZnO revealed in the HRTEM images) of the Au/ZnO nanorods prepared at (a)(b) 0.125 mM, (c)(d) 0.25 mM and (e)(f) 0.5 mM HAuCl4 solution. 85 Fig. 4-17 Size distribution histograms of the Au nanoparticles in different Au/ZnO nanorods synthesized via (a) 0.125 mM, (b) 0.25 mM and (c) 0.5 mM HAuCl4 solution, which are extracted from the magnified TEM images. 86 Fig. 4-18 Transient resistance change of pristine ZnO nanorod arrays and various Au/ZnO NRs (fabricated with different HAuCl4 concentrations) under different CO concentrations (100-600 ppm) mixed-air ambient gases at 300 °C. (b) The variation in sensitivity of diverse ZnO-based sensor exposed to different concentrations of CO contained ambient gases. 89 Fig. 4-19 The schematic diagram of spillover effect on the Au/ZnO nanorods fabricated by (a) 0.125 mM, (b) 0.25 mM and (c) 0.5 mM HAuCl4 solution. 91 Fig. 4-20 Transient resistance change of the Au/ZnO NRs fabricated by 0.25 mM HAuCl4 under different (a) H2 and (b) C2H5OH concentrations (100-600 ppm) mixed-air ambient gases at 300 °C. (c) Sensitivity variation of Au/ZnO NRs (0.25mM) exposed to different analytes with various concentrations (100-600 ppm). (d) Transient resistance change (and sensitivity) of pristine ZnO nanorod arrays under different C2H5OH concentrations (100-600 ppm) mixed-air ambient gases at 300 °C. 95 Fig. 4-21 The SEM images of (a) (c) pristine ZnO nanorod arrays and (b) (d) Pd/ZnO NRs fabricated by photochemical reduction in 0.75 mM PdCl2 ethanol solution. The corresponding EDS spectra and BSE images are also shown. 98 Fig. 4-22 The GA-XRD spectra of pristine ZnO nanorod arrays and Pd/ZnO nanorod arrays produced through PCD in 0.75 mM PdCl2 ethanol solution. 99 Fig. 4-23 (a) The low-magnification TEM image and (b) (c) high resolution TEM images of the Pd nanoparticles decorated ZnO nanorod. The insert of (c) is the corresponding electron diffraction pattern of a Pd nanoparticle on the ZnO nanorod produced by PCD with 0.75 mM PdCl2 ethanol solution.. 101 Fig. 4-24 The XPS of (a) the O 1s core levels obtained from pristine ZnO nanorod arrays and Pd/ZnO NRs fabricated through PCD in 0.75 mM PdCl2 ethanol solution (b) the Pd 3d core levels acquired from Pd/ZnO nanorod arrays. (The spectra were calibrated using the C 1s core level associated with carbon pollution at 284.6 eV as a reference.) 104 Fig. 4-25 (a) The variation in sensitivity while the pristine ZnO NRs and Pd/ZnO nanorod arrays were exposed to various air-carbon monoxide mixed ambient gases at individual optimal operating temperatures (300 °C and 260 °C). Insert is the transient resistance change of pristine ZnO NRs and Pd/ZnO NRs under different CO concentrations. (b) The response and recovery times to various concentration of CO in pristine ZnO and Pd/ZnO NRs gas sensors. The Pd/ZnO NRs was fabricated through PCD with 0.75 mM PdCl2 ethanol solution. 108 Fig. 4-26 The schematic band diagrams of (a) pristine ZnO NRs and (b) Pd/ZnO nanorod arrays exposed to air and CO gas ambient. (The C. B., V. B. and are the codes of conduction band, valence band and Fermi level. The D. R. and C. C. denote the depletion region and conduction channel) 109 Fig. 4-27 The SEM images of Pd/ZnO NRs produced by photochemical deposition (PCD) with (a) 0, (b) 4, (c) 16, (d) 30, (e) 60 mg PVP (K30) in 0.25 mM PdCl2-methanol solution. (molar ratio of Pd: PVP = 45 ~ 3) (f) The XRD spectrum of Pd/ZnO NRs fabricated through pristine PCD course. 112 Fig. 4-28 The TEM images of Pd/ZnO nanorods produced by photochemical deposition (PCD) with (a) 0, (b) 4, (c) 16, (d) 30, (e) 60 mg PVP (K30) in 0.25 mM PdCl2-methanol solution. (f) The variation in density and average size of Pd nanoparticles attached on ZnO nanorods with different doses of PVP addition. (The density is defined as the number of Pd nanoparticles attached onto the surface of cylindrical ZnO nanorod with 50 nm diameter and 100 nm length) 115 Fig. 4-29 The histogram of size distribution of Pd nanoparticles attached on ZnO nanorod by PVP- mediated PCD with (a) 4, (b) 16, (c) 30, (d) 60 mg PVP (K30) in 0.25 mM PdCl2-methanol solution. 117 Fig. 4-30 (a) The high-magnification and (b) high-resolution TEM images of Pd nanoparticles decorated on ZnO nanorod by PVP-mediated PCD with 16 mg PVP (K30) with 0.25 mM PdCl2-methanol solution. The insets in figure a and b are the corresponding NBEDs (Nanobeam Electron Diffraction) and FFTs (fast Fourier transform). 118 Fig. 4-31 (a) UV-Vis absorption spectra of the precursor solution (0.25 mM PdCl2-methanol solution) containing different amount of PVP and that consisting of 60 mg PVP is subsequently irradiated with UV for 30 min and 3 hr. (b) FTIR spectra of pure PVP, pristine ZnO nanorods and Pd/ZnO nanorods produced by PCD with different amount (0, 4, 60 mg) of PVP (K30) in precursor solution. 123 Fig. 4-32 Schematic diagrams about the influence of PVP addition on the morphology and dispersion of Pd nanoparticles decorated on ZnO nanorod via photochemical deposition (PCD) processes. 124 Fig. 4-33 (a) The sensitivity variation of distinct Pd/ZnO NRs used for detecting 500 ppm H2 mixed air under different temperature. The D value in the bracket means the average density (per ZnO nanorod with 50 nm diameter and 100 nm length) of Pd nanoparticles decorated on Pd/ZnO NRs fabricated with different amount (4-60 mg) of PVP. (The sensitivity was measured by exposing to 15 min pulses of specific concentration of H2 mixed in air as shown in (b)). (b) The resistance variation of Pd/ZnO NRs fabricated with 4 mg PVP exposed to various concentration (10-600 ppm) of H2 mixed with air at 260 °C. The inset is the corresponding sensitivity variation versus the concentration of H2 mixed with air. 127 Fig. 4-34 The sensitivity variation to the 500 ppm H2 mixed air of the Pd/ZnO NRs fabricated with (a) 0 mg, (b) 4 mg, (c) 16 mg, (d) 30 mg and (e) 60 mg PVP under different operating temperature. (f) The variation of response time in those Pd/ZnO NRs used for sensing 500 ppm H2 from RT to 300 °C (Response time is defined as the time required for the device to reach 90 % of the maximum resistance variation after the sensor is exposed to the given concentration of H2). 128 Fig. 4-35 The resistance variation of the Pd/ZnO NRs (4 mg PVP) versus time when it is exposed to 10 and 600 ppm H2 and air alternately for several cycles at 260 °C. 131 表目錄 Table 2-1 Common properties of bulk wurtzite ZnO [70] 32 Table 3-1 The major chemicals used in this study. 42 Table 4-1 The calculated grain sizes of ZnO seed layer annealed at different annealing temperatures 70

    [1] N. Yamazoe, “Toward Innovations of Gas Sensor Technology”, Sens. Actuators, B 108 (2005) 2-14.
    [2] Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu,” ZnO nanowire field-effect transistor and oxygen sensing property”, Appl. Phys. Lett. 85 (2004) 5923-5925.
    [3] F.C. Huang, Y.Y. Chen and T.T. Wu, “A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods”, Nanotechnology 20 (2009) 065501.
    [4] T. Seiyama, A. Kato, K. Fjishi, M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films”, Anal. Chem. 34 (1962), 1502-1503.
    [5] H. Nanto, T. Minami, and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity”, J. Appl. Phys. 2 (1986) 482-484.
    [6] S. Basu and A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application”, Sens. Actuators, B 22 (1994) 83-87.
    [7] P. Mitra, A.P. Chatterjee 1, H.S. Maiti, “ZnO thin film sensor”, Mater. Lett. 35 (1998) 33-38.
    [8] Z. L. Wang, “Nanostructure of zinc oxide”, Mater. Today, 7 (2004) 26-33.
    [9] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, J. R. LaRoche,” ZnO nanowire growth and devices”, Mater. Sci. Eng., R 47 (2004) 1-47.
    [10] S. Xu and Z. L. Wang, “One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties”, Nano Res. 4 (2011) 1013-1098.
    [11] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors”, Appl. Phys. Lett. 84 (2004) 3654-3656.
    [12] N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-Based Sensors”, small 6 (2010) 1705-1722.
    [13] M. J. S. Spencer, “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Prog. Mater Sci. 57 (2012) 437-486.
    [14] S. R. Morrison, “The Chemical Physics of Surface 2nd Edition” Plenum Press. New York and London Ch7 (1990) pp. 251-280.
    [15] S. Brunauer, P. H. Emmett, and E. Teller, ‘’Adsorption of gases in multimolecular layers”, J. Amer. Chem. Soc. 60 (1938) 309-319.
    [16] S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der Waals adsorption of gases”, J. Amer. Chem. Soc. 62 (1940) 1723-1732.
    [17] J. E. Lennard-Jones,”Processes of adsorption and diffusion on solid surfaces”, Trans. Faraday Soc. 28 (1932) 333-359.
    [18] M. E. Franke, T. J. Koplin, and U. Simon, “Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?”, small 2 (2006) 36-50.
    [19] S. R. Morrison, “Surface Barrier Effects in Adsorption, Illustrated by Zinc Oxide”, Adv. Catal. 7 (1955) 259-301.
    [20] N. Barsan, and U. Weimar, “Conduction model of metal oxide gas sensors”, J. Electroceram. 7 (2001) 143-167.
    [21] M. Gratzel, “Photoelectrochemical Cells”, Nature 414 (2001) 338-344.
    [22] P. Feng, Q. Wan, and T. H. Wang, “Contact-controlled sensing properties of flowerlike ZnO nanostructures” Appl. Phys. Lett. 87 (2005) 213111.
    [23] A. Gurlo, “Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen”, ChemPhysChem 7 (2006) 2041-2052.
    [24] D. Kohl, “Surface processes in the detection of reducing gases with SnO2-based devices”, Sens. Actuators, 18 (1989) 71 -113.
    [25] H. Chon, and J. Pajares, “Hall effect studies of oxygen chemisorption on zinc oxide”, J. Catal. 14 (1969) 257-260.
    [26] K. Tanaka and G. Blyholde, “Adsorbed Species of Oxygen on Dark and on Illuminated Zinc Oxide”, J. Chem. Soc., Chem. Commun. 21 (1971) 1343-1344.
    [27] U. Lampe, M. Fleischer, N. Reitmeier, H. Meixner, J. B. McMonagle, and A. Marsch, “New Metal Oxide Sensors: Materials and Properties in Sensors”, (Eds.: W. Gcpel, J. Hesse, J. N. Zemel) VCH, Weinheim, 2 (1997) 29-30.
    [28] J. Cunningham, J. J. Kelly, and A. L. Penny, Reactions involving electron transfer at semiconductor surfaces. I Dissociation of Nitrous Oxide over n-Type Semiconductors at 20°”, J. Phys. Chem. 74 (1970) 1992-2000.
    [29] N. Yamazoe, G. Sakai, and K. G. Shimanoe,”Oxide semiconductor gas sensors”, Catal. Surv. Asia 7 (2003) 63-74.
    [30] Y. J. Chen, C L Zhu and G Xiao, “Reduced-Temperature Ethanol Sensing Characteristics of Flower-Like ZnO Nanorods Synthesized by a Sonochemical Method”, Nanotechnology 17 (2006) 4537-4541.
    [31] M. J. Madou, S. R. Morrison, “Chemical Sensing with Solid State Devices”, Academic Press, NewYork, (1989).
    [32] S. Lenaertsa, M. Honoré, G. Huyberechts, J. Roggen,G. Maes, “In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K”, Sens. Actuators, B 19 (1994) 478-482.
    [33] Y. H. Xiao, L. Z. Lu, A. Q. Zhang, Y. H. Zhang, L. Sun, L. Huo, and F. Li, “Highly Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO Nanosheets: High Percentage of Exposed (100) Facets Working Together with Surface Modification with Pd Nanoparticles”, ACS Appl. Mater. Interfaces 4 (2012) 3797-3804.
    [34] S. J. Kim, C. W. Na, I. S. Hwang, J. H. Lee, “One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection”, Sens. Actuators, B 168 (2012) 83-89.
    [35] N. Y amaze, “New approaches for improving semiconductor gas sensors”, Sensors and Actuators B, 5 (1991) 7-19.
    [36] A. Rothschild and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors”, J. Appl. Phys. 95 (2004) 6374-6380.
    [37] A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures”, Annu. Rev. Mater. Res. 34 (2004) 151-180.
    [38] S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe, “Electronic Interaction between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensor”, Jpn. J. Appl. Phys. 27 (1988) 1798-1802.
    [39] T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, “Sensing Behavior of CuO-Loaded SnO2 Element for H2S Detection”, Chem. Lett. 20 (1991) 575-578.
    [40] J. H. Kim, W. S. Kim, and K. J. Yong, “CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing”, J. Phys. Chem. C 116 (2012) 15682-15691.
    [41] Y. J. Chen, C. L. Zhu, L. J. Wang, P. Gao, M. S. Cao and X. L. Shi, “Synthesis and enhanced ethanol sensing, characteristics of α-Fe2O3/SnO2 core–shell Nanorods”, Nanotechnology 20 (2009) 045502.
    [42] J. Zhang, X. H. Liu, L. W. Wang, T. L. Yang, X. Z. Guo, S. H. Wu, S. Wang and S. M. Zhang, “Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles”, Nanotechnology 22 (2011) 185501.
    [43] J. X. Wang, X. W. Sun, Y. Yang, K. K. A Kyaw, X. Y. Huang, J. Z. Yin, J. Wei and H. V. Demir, “Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties”, Nanotechnology 22 (2011) 325704.
    [44] C. W. Na, H.S. Woo, Il-D. Kim and J. H. Lee, “Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor”, Chem. Commun. 47 (2011) 5148-5150.
    [45] D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi, and R. A. Fischer, “Co3O4/ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications”, ACS Appl. Mater. Interfaces 4 (2012) 928-934.
    [46] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles”, Nano Lett. 5 (2005) 667-673.
    [47] D. J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild, and I. D. Kim, “Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading”, Adv. Funct. Mater. 20 (2010) 4258-4264.
    [48] G. Sberveglieri, “Gas sensors: principles, operation, and development”, Boston Dordrecht: Kulwer Academic Publishers Ch4 (1992) pp. 70-76.
    [49] Y. Zeng, Z. Lou, L. Wang, B. Zou, T. Zhang, W. T. Zheng, G. T. Zou, “Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure”, Sens. Actuators, B 156 (2011) 395-400.
    [50] L. L. Xing, C. H. Ma, Z. H. Chen, Y. J. Chen and X. Y. Xue, “High gas sensing performance of one-step-synthesized Pd-ZnO nanoflowers due to surface reactions and modifications”, Nanotechnology 22 (2011) 215501.
    [51] S. H. Wei, Y. Yu, M. H. Zhou, “CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method”, Mater. Lett. 64 (2010) 2284-2286.
    [52] C. C. Li, L. M. Li, Z. F. Du, H. C. Yu, Y. Y. Xiang, Y. Li, Y. Cai and T. H. Wang, “Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods”, Nanotechnology 19 (2008) 035501.
    [53] N. G. Cho, H. S. Woo, J. H. Lee and I. D. Kim, “Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial Template”, Chem. Commun. 47 (2011) 11300-11302.
    [54] L. L. Wang, Z. Lou, T. Fei and T. Zhang, “Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties”, J. Mater. Chem. 22 (2012) 4767-4771.
    [55] J. Zhang, X. H. Liu, S. H. Wu, B. Q. Cao, S. H. Zheng, “One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance”, Sens. Actuators, B 169 (2012) 61-66.
    [56] S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles”, Nanotechnology 21 (2010) 415502.
    [57] X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced Optical and Sensing Properties of One-Step Synthesized Pt-ZnO Nanoflowers”, J. Phys. Chem. C 114 (2010) 18607-18611.
    [58] Y.H. Lin, Y. C. Hsueh, P. S. Lee, C. C. Wang, J. M. Wu, T. P. Perng and H. C. Shih, “Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum”, J. Mater. Chem. 21 (2011) 10552-10558.
    [59] Y. Zhang, J. Q. Xu, P. C. Xu, Y. H Zhu, X. D. Chen and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance”, Nanotechnology 21 (2010) 285501.
    [60] X. J. Wang, W. Wang, Y. L. Liu, “Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO”, Sens. Actuators, B 168 (2012) 39-45.
    [61] Y. Zhang, Q. Xiang, J. Q. Xu, P. C. Xu, Q. Y. Pan and F. Li, “ Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances”, J. Mater. Chem. 19 (2009) 4701-4706.
    [62] P. G. Hu, G. J. Du, W. J. Zhou, J. J. Cui, J. J. Lin, H. Liu, D. Liu, J. Y. Wang, and S. W. Chen, “Enhancement of Ethanol Vapor Sensing of TiO2 Nanobelts by Surface Engineering”, ACS Appl. Mater. Interfaces 2 (2010) 3263-3269.
    [63] I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, and J. H. Lee, “Facile Control of C2H5OH Sensing Characteristics by Decorating Discrete Ag Nanoclusters on SnO2 Nanowire Networks”, ACS Appl. Mater. Interfaces 3 (2011) 3140-3145.
    [64] J. Q. Xu, J. J. Han, Y. Zhang, Y. Sun, B.Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors” Sens. Actuators, B 132 (2008) 334-339.
    [65] X. L. Gou, G. X. Wang, J. Yang, J. S. Park and D. Wexler, “Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons”, J. Mater. Chem. 18 (2008) 965-969.
    [66] M. K. Kumar, L. K. Tan, N. N. Gosvami, and H. Gao, “Titania Nanofilm with Electrical Switching Effects upon Hydrogen/Air Exposure at Room Temperature”, J. Phys. Chem. C 113 (2009) 6381-6389.
    [67] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption”, Appl. Phys. Lett. 91 (2007) 053111.
    [68] S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters”, Phys. Rev. B 58 (1998) 14102-14105.
    [69] C. Klingshirn, “High-density phases of ZnO: Structural and compressive parameters”, phys. stat. sol. 244 (2007) 3027-3073.
    [70] M. J. S. Spencer, “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Prog. Mater Sci. 57 (2012) 437-486.
    [71] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem. 14 (2004) 2575-2591.
    [72] Q Ahsanulhaq, A Umar and Y B Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties”, Nanotechnology 18 (2007) 115603.
    [73] J. B. Han, F. G. Fan, C. X., S. H. Lin, M. We, X. Duan and Z. L. Wang, “ZnO nanotube-based dye-sensitized solar cell and its application in self-powered Devices”, Nanotechnology 21 (2010) 405203.
    [74] J. Y. Park, S. W. Choi and S. S. Kim, “A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer Templates”, Nanotechnology 21 (2010) 475601.
    [75] D. Pradhan, M. Kumar, Y. Ando, and K. T. Leung, “Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties”, ACS Appl. Mater. Interfaces 1 (2009) 789-796.
    [76] M. K. Kim, D. K. Yi, and U. Paik, Tunable, “Flexible Antireflection Layer of ZnO Nanowires Embedded in PDMS” Langmuir 26 (2010) 7552-7554.
    [77] K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-Templated Hydrothermal Growth of Vertically Aligned Single-Crystal ZnO Nanorods and Morphological Transformations Using Structural Polarity”, Adv. Funct. Mater. 20 (2010) 3055-3063.
    [78] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes”, Chem. Mater. 13 (2001) 4395-4398.
    [79] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem. 64 (1960) 688-691.
    [80] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P. D.Yang, “Room-temperature Ultraviolet Nanowire Nanolasers”, Science 292 (2001) 1897-1899.
    [81] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13 (2003) 9-24.
    [82] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13 (2001) 113-116.
    [83] W. Lee, M. C. Jeong, J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation”, Acta Mater. 52 (2004) 3949-3957
    [84] J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. 14 (2002) 215-218.
    [85] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc. 125 (2003) 4430-4431.
    [86] Y. C. Wang, I. C. Leu, and M. H. Hon, “Dielectric Property and Structure of Anodic Alumina Template and Their Effects on The Electrophoretic Deposition Characteristics of ZnO Nanowire Arrays”, J. Appl. Phys.95 (2004) 1444-1449.
    [87] G. She.; X. Zhang, W. Shi, X Fan, J. C. Chang, C. Lee, S. Lee, C. Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates”, Appl. Phys. Lett. 92 (2008) 053111.
    [88] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angew. Chem. Int. Ed. 42 (2003) 3031-3034.
    [89] X. F. Wu, H. Bai, C. Li, G. Lu and G. Q. Shi, “Controlled One-Step Fabrication of Highly Oriented ZnO Nanoneedle/Nanorods Arrays at Near Room Temperature”, Chem. Commun. 15 (2006) 1655-1657.
    [90] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution”, Adv. Mater. 15 (2003) 464-466.
    [91] S. C. Liou, C. S. Hsiao, and S. Y. Chen, “Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution”, J. Cryst. Growth 274 (2005) 438-446.
    [92] C. K. Xu, P. Shin, L. L. Cao, and D. Gao,” Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells”, J. Phys. Chem. C114 (2010) 125-129.
    [93] C. K. Xu, J. M. Wu, U. V. Desai, and D Gao,” Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells”, J. Am. Chem. Soc. 133 (2011) 8122-8125.
    [94] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem. 12 (2002) 3773-3778.
    [95] Y. Sun, D. J. Riley, and M. N. R. Ashfold,” Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates”, J. Phys. Chem. B 110 (2006) 15186-15192.
    [96] B. Liu and H. C. Zeng, “Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures”, Langmuir 20 (2004) 4196-4204.
    [97] J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor”, Sens. Actuators, B 84 (2002) 258-264.
    [98] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors”, Prog. Mater Sci. 54 (2009) 1-67.
    [99] Y. B. Hahn, R. Ahmad and Nirmalya Tripathy, “Chemical and biological sensors based on metal oxide nanostructures”, Chem. Commun. 48 (2012) 10369-10385.
    [100] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally Grown Oriented ZnO Nanorod Arrays for Gas Sensing Applications”, Nanotechnology 17 (2006) 4995-4998.
    [101] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu and W. F. Zhang, “Size Dependence of Gas Sensitivity of ZnO Nanorods”, J. Phys. Chem. C 17 (2007) 1900-1903.
    [102] J. Y. Park, D. E. Song and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays”, Nanotechnology 19 (2008) 105503.
    [103] Y. Zeng, T. Zhang, M. X. Yuan, M. H. Kang, G. Y. Lu, R. Wang, H. T. Fan, Y. He, H. B. Yang,” Growth and selective acetone detection based on ZnO nanorod arrays”, Sens. Actuators, B 143 (2009) 93-98.
    [104] D. Barreca, D. Bekermann, E. omini, A Devi, R. A. Fischer, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri and E. Tondello, “Urchin-like ZnO nanorod arrays for gas sensing applications”, CrystEngComm 12 (2010) 3419-3421.
    [105] J. Yi, J. M. Lee, W. I. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors”, Sens. Actuators, B 155 (2011) 264-269.
    [106] S. Q. Tian, F. Yang, D. Zeng, and C. S. Xie, “Solution-Processed Gas Sensors Based on ZnO Nanorods Array with an Exposed (0001) Facet for Enhanced Gas-Sensing Properties”, J. Phys. Chem. C 116 (2012) 10586-10591.
    [107] T. J. Hsueh, Y. W. Chen, S.J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures”, J. Electrochem. Soc. 154 (2007) J393-J396.
    [108] M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor”, Appl. Phys. Lett. 93 (2008) 263103.
    [109] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen,” Laterally grown ZnO nanowire ethanol gas sensors”, Sens. Actuators, B 126 (2007) 473-477.
    [110] X. G. Han, X. Zhou, Y. Jiang and Z. X. Xie, “The preparation of spiral ZnO nanostructures by top-down wet-chemical etching and their related properties”, J. Mater. Chem. 22 (2012) 10924-10928.
    [111] X. G. Han, H. Z. He, Q. Kuang, X. Zhou, X. H. Zhang, T. Xu, Z. X. Xie, and L. S. Zheng, “Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites”, J. Phys. Chem. C 113 (2009) 584-589.
    [112] M. Ohyama, H. Kozuka, T. Yoko, Sol-Gel Preparation of ZnO Films with Extremely Preferred Orientation along (002) Plane from Zinc Acetate Solution, Thin Solid Films 306 (1997) 78-85.
    [113] J. X. Wang, X. W. Sun, S. S. Xie, Y. Yang, H. Y. Chen, G. Q. Lo, and D. L. Kwong, “Preferential Growth of SnO2 Triangular Nanoparticles on ZnO Nanobelts”, J. Phys. Chem. C 111 (2007) 7671-7675.
    [114] W. An, X. J. Wu, and X. C. Zeng, “Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study”, J. Phys. Chem. C 112 (2008) 5747-5755.
    [115] H. Xu, R. Q. Zhang, and S. Y. Tong,” Interaction of O2, H2O, N2, and O3 with stoichiometric and reduced ZnO surface”, Phys. Rev. B 82 (2010) 155326.
    [116] F. Xu, Y. O. Lu, Y. Xie, and Y. F. Liu, “Synthesis and Photoluminescence of Assembly-Controlled ZnO Architectures by Aqueous Chemical Growth”, J. Phys. Chem. C 113 (2009) 1052-1059.
    [117] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO-nanostructures, defects, and devices”, Mater. Today 10 (2007) 40-48.
    [118] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurii, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge,” Defects in ZnO Nanorods Prepared by a Hydrothermal Method”, J. Phys. Chem. B 110 (2006) 20865-20871.
    [119] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt,” Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Appl. Phys. Lett. 68 (1996) 403-405.
    [120] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt,” Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79 (1996) 7983-7990.
    [121] M. Guo, P. Diao, S. M. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparingconditions” J. Solid State Chem. 178 (2005) 1864-1873
    [122] G. Z. Xing, D. D. Wang, J. B. Yi, L. L. Yang, M. Gao, M. He, J. H. Yang, J. Ding, T. Chien Sum, and T. Wu, “Correlated d0 ferromagnetism and photoluminescence in undoped ZnO nanowires”, Appl. Phys. Lett. 96 (2010) 112511.
    [123] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edition, John Wiley & Sons, Inc. New Jersey (2007) pp. 135-136.
    [124] K. Liu, M. Sakurai, M. Y. Liao, and M. Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles”, J. Phys. Chem. C 114 (2010) 19835-19839
    [125] Y. Zhang, J. Q. Xu, Q. Xiang, H. Li, Q. G. Pan, and P. C. Xu, “Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties”, J. Phys. Chem. C 113 (2009) 3430-3435.
    [126] Y. Jiao, H. J. Zhu, M. J. Zhou, X. F. Wang, and Q. Li, ”Suppression of Green Emission in ZnO Nanorods-A Discussion on Surface and Interior Structural Quality Manipulation”, J. Phys. Chem. C 114 (2010) 208-211.
    [127] A. D. Krawitz, Introduction to Diffraction in Materials, Science, and Engineering, John Wiley &. Sons, Inc. USA (2001) pp. 343-344.
    [128] T. Voss, C. Bekeny, L. Wischmeier, H. Gafs, S. Börner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires”, Appl. Phys. Lett. 89 (2006) 182107.
    [129] A. B. Djurisic and Y. H. Leung, ”Optical Properties of ZnO Nanostructures”, small 2 (2006) 944-961.
    [130] J. Y. Dong, Y. J. Hsu, D. S. H. Wong, and S. Y. Lu, ”Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method”, J. Phys. Chem. C 114 (2010) 8867-8872.
    [131] D. Li, Y. H. Leung, A. B. Djurišiæ, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, ”Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods”, Appl. Phys. Lett. 85 (2004) 1601-1603.
    [132] A. Janotti and C. G. Van de Walle, ” Native point defects in ZnO”, Phys. Rev. B 76 (2007) 165202.
    [133] M. Chen, Z. H. Wang, D. M. Han, F. B. Gu, G. S. Guo, ”High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials”, Sens. Actuators, B 157 (2011) 565-574.
    [134] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen, ”X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Appl. Surf. Sci. 158 (2000)134-140.
    [135] H. H. Wang, S. H. Baek, J. J. Song, J. H. Lee and S. W. Lim, “Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays”, Nanotechnology 19 (2008) 075607.
    [136] F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J. R. Morante, M. A. Juli, S. Mathur and A. Romano-Rodriguez, “Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires”, Adv. Funct. Mater. 18 (2008) 2990-2994.
    [137] L. M. Chen, L. B. Luo, Z. H. Chen, M. L. Zhang, J. A. Zapien, C. S. Lee, and S. T. Lee,” ZnO/Au Composite Nanoarrays As Substrates for Surface-Enhanced Raman Scattering Detection”, J. Phys. Chem. C 114 (2010) 93-100.
    [138] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents”, J. Catal. 231 (2005) 105-114.
    [139] F. Xu, P. Zhang, A. Navrotsky, Z. Y. Yuan, T. Z. Ren, M. Halasa, and B. L. Su, “Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity”, Chem. Mater. 19 (2007) 5680-5686.
    [140] A. Roucoux, J. Schulz, and H. Patin, “Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?”, Chem. Rev. 102 (2002) 3757-3778.
    [141] H. Hirai, H. Chawanya, N. Toshima, “Colloidal Palladium Protected with Poly (n-vinyl-2-pyrrolidone) for Selective Hydrogenation of Cyclopentadiene”, React. Polym. 3 (1985) 127-141.
    [142] J. L. G, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. J. Yacaman, “Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants”, Nano Lett. 2 (2002) 397-401.
    [143] B. Ingham, T. H. Lim, C. J. Dotzler, A. Henning, M. F. Toney, and R. D. Tilley, “How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth”, Chem. Mater. 23 (2011) 3312-3317.
    [144] Q. Xiang, G. F. Meng, H. B. Zhao, Y. Zhang, H. Li, W. J. Ma, and J. Q. Xu, ”Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing”, J. Phys. Chem. C 114 ( 2010) 2049-2055.
    [145] R. K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar, ”Au Decorated Zinc Oxide Nanowires for CO Sensing”, J. Phys. Chem. C 113 (2009) 16199-16202.
    [146] S. J. Chang, T. J. Hsueh, I. C. Chen and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502.
    [147] X. H. Liu, J. Zhang, X. Z. Guo, S. H. Wu and S. R. Wang, “Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods”, Nanoscale 2 (2010) 1178-1184.
    [148] M. Yuasa, T. Kida, and K. Shimanoe, “Preparation of a Stable Sol Suspension of Pd-Loaded SnO2 Nanocrystals by a Photochemical Deposition Method for Highly Sensitive Semiconductor Gas Sensors”, ACS Appl. Mater. Interfaces 4 (2012) 4231-4236.
    [149] J. Domenech and A. Prieto, “Stability of ZnO Particles in Aqueous Suspensions under UV Illumination”, J. Phys. Chem. 90 (1986) 1123-1126.
    [150] H. Yoshiki, K. Hashimoto, and A. Fujishima, “Reaction Mechanism of Electraless Metal Deposition Using ZnO Thin Film (I): Process of Catalyst Formation”, J. Electrochem. Soc. 142 (1995) 428-432.
    [151] H. Yoshiki, H. Kitahara, K. Hashimoto, and A. Fujishima, “Pattern Formation of Cu Layer by Photocatalytic Reaction of ZnO Thin Film”, J. Electrochem. Soc. 142 (1995) L235-L237.
    [152] G. Williams, B. Seger, and P. V. Kamat,” TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide”, ACS Nano 2 (2008) 1487-1491.
    [153] R. Huck, U. Bottger, D. Kohl, G. Heiland, “Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits”, Sens. Actuators 17 (1989) 355-359.
    [154] A. I. Bhatt, A. Mechler, L. L. Martin and A. M. Bond, “Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation”, J. Mater. Chem. 17 (2007) 2241-2250.
    [155] R. Massard, D. Uzio, C. Thomazeau, C. Pichon, J. L. Rousset, J. C. Bertolini, “Strained Pd overlayers on Ni nanoparticles supported on alumina and catalytic activity for buta-1,3-diene selective hydrogenation”, J. Catal. 245 (2007) 133-143.
    [156] J. F. Moulder, “Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data”, Eden Prairie, Minn.: Physical Electronics (1995)
    [157] M. P. Hyman, V. M. Lebarbier, Y. Wang, A. K. Datye, and J. M. Vohs, “A Comparison of the Reactivity of Pd Supported on ZnO and ZnO(0001)”, J. Phys. Chem. C 113 (2009) 7251-7259.
    [158] I. Aruna, F. E. Kruis, S. Kundu, M. Muhler, R. Theissmann, and M. Spasova, “CO ppb sensors based on monodispersed SnOx: Pd mixed nanoparticle layers: Insight into dual conductance response”, J. Appl. Phys. 105 (2009) 064312.
    [159] D. F. Gu and S. W. K. Dey, “Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2”, Appl. Phys. Lett. 89 (2006) 082907.
    [160] M. Harada, and Y. Inada, “In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions”, Langmuir 25 (2009) 6049-6061.
    [161] T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition”, J. Phys. Chem. B 103 (1999) 3818-3827.
    [162] F. Durap, O¨. Metin, M. Aydemir and S. O¨zkar, “New Route to Synthesis of PVP-Stabilized Palladium(0) Nanoclusters and Their Enhanced Catalytic Activity in Heck and Suzuki Cross-Coupling Reactions”, Appl. Organomet. Chem. 23 (2009) 498-503.
    [163] Q. M. Shen, Q. H. Min, J. J. Shi, L. P. Jiang, J. R. Zhang, W. H. Hou, and J. J. Zhu, “Morphology-Controlled Synthesis of Palladium Nanostructures by Sonoelectrochemical Method and Their Application in Direct Alcohol Oxidation”, J. Phys. Chem. C 113 (2009) 1267-1273.
    [164] Z. Q. Tan, H. Y. Abe and S. S. Ohara, “Ordered Deposition of Pd nanoparticles on Sodium Dodecyl Sulfate-Functionalized Single-Walled Carbon Nanotubes”, J. Mater. Chem. 21 (2011) 12008-12014.
    [165] Z. T. Zhang, B. Zhao, and L. M. Hu, “PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes”, J. Solid State Chem. 121 (1996) 105-110.
    [166] J. H. Zhang, H. Y. Liu, Z. L. Wang, “N. B. Ming, Z. R. Li, and A. S. Biris, Polyvinylpyrrolidone-Directed Crystallization of ZnO with Tunable Morphology and Bandgap”, Adv. Funct. Mater. 17 (2007) 3897-3905.
    [167] A. I. Inamdar, S. H. Mujawar, V. Ganesan and P. S. Patil, “Surfactant-Mediated Growth of Nanostructured Zinc Oxide Thin Films via Electrodeposition and Their Photoelectrochemical Performance”, Nanotechnology 19 (2008) 325706.
    [168] H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media”, J. Phys. Chem. B 109 (2005) 18260-18266.
    [169] S. F. Wei, J. S. Lian, Q. Jiang, “Controlling Growth of ZnO Rods by Polyvinylpyrrolidone (PVP) and Their Optical Properties”, Appl. Surf. Sci. 255 (2009) 6978-6984.
    [170] X. Y. Xu, C. X. Xu, Y. Lin, T. Ding, S. J. Fang, Z. L. Shi, W. W. Xia, and J. G. Hu, “Surface Photoluminescence and Magnetism in Hydrothermally Grown Undoped ZnO Nanorod Arrays”, Appl. Phys. Lett. 100 (2012) 172401.
    [171] N. G. Cho, G. C. Whitfield, D. J. Yang, H. G. Kim, H. L. Tuller, and I. D. Kim, “Facile Synthesis of Pt-Functionalized SnO2 Hollow Hemispheres and Their Gas Sensing Properties”, J. Electrochem. Soc 157 (2010) J435-J439.
    [172] J. L. Johnson, A. Behnam , S. J. Pearton , and A. Ural, “Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks”, Adv. Mater. 22 (2010) 4877-4880.
    [173] S. C. Tsang, C. D. A. Bulpitt, P. C. H. Mitchell, and A. J. Ramirez-Cuesta, “Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor”, J. Phys. Chem. B 105 (2001) 5737-5742.
    [174] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. 5 (2000) 1012-1015.
    [175] Q. Wan, C. L. Lin, X. B. Yu and T. H. Wang, “Room-Temperature Hydrogen Storage Characteristics of ZnO Nanowires”, Appl. Phys. Lett. 84 (2004) 124-126.
    [176] H. Pan, J. Z. Luo, H. Sun, Y. P. Feng, C. Poh, and J. Y. Lin, “Hydrogen Storage of ZnO and Mg Doped ZnO Nanowires”, Nanotechnology 17 (2006) 2963-2967.
    [177] C. Y. Chen, J. K. Chang, W. T. Tsai and C. H. Hung, “Uniform Dispersion of Pd nanoparticles on Carbon Nanostructures Using a Supercritical Fluid Deposition Technique and Their Catalytic Performance towards Hydrogen Spillover”, J. Mater. Chem. 21 (2011) 19063-19068.
    [178] Y. Sun and H. H. Wang, High-Performance, “Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles”, Adv. Mater. 19 (2007) 2818-2823.
    [179] M. A. Lim, D. H. Kim, C. O. Park, Y. W. Lee, S. W.Han, Z. Y. Li, R. S. Williams, and I. Park, A New Route toward Ultrasensitive, “Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates”, ACS Nano 6 (2012) 598-608.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE