| 研究生: |
張家銘 Chang, Chia-Ming |
|---|---|
| 論文名稱: |
氧化鋅奈米棒陣列之合成與改質及其氣體感測特性 Preparation of ZnO Nanorod Arrays and Surface Modification for Gas Sensing Application |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 水溶液法 、氧化鋅奈米棒陣列 、表面修飾改質 、氣體感測元件 、光化學還原法 |
| 外文關鍵詞: | Aqueous chemical growth, ZnO nanorod arrays, Surface modification, Gas sensing device, Photochemical reduction |
| 相關次數: | 點閱:128 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主軸是以各種化學溶液法(水溶液法、水熱法、光化學還原法)分別進行合成與表面修飾,於低溫下成長之高表面積比與高活性表面之氧化鋅奈米棒陣列,以製作各種還原性氣體感測元件。主要的目標為提高氣體之敏感度(sensitivity)、降低元件操作溫度(operating temperature)與偵測極限(detection limit)、減少反應以及回復時間(response and recovery time)和提高特定氣體之選擇性(selectivity)等。首先利用不同成長特性之化學溶液法或改變預沉積晶種的熱處理溫度,探討所成長氧化鋅奈米棒陣列的表面或內部缺陷特性及其所衍生的相關電特性對於氣體感測特性之影響。以強鹼水溶液溶蝕-成長交互作用的沉積合成富含表面缺陷(或能態密度)之氧化鋅奈米棒陣列,並以光致螢光光譜和其接面電子特性驗證。結果顯示,具有較多缺陷能階之氧化鋅,其表面有較高的載子濃度提供氣體感測過程中氧氣吸附之用,隨後反映在元件的電阻變化量上,因此乙醇氣體的敏感度即可藉由表面缺陷(氧空缺)數量的增進而提升。
接著,以水熱法將金奈米粒子修飾氧化鋅奈米棒以提升元件表面的活性,透過適量奈米顆粒催化分解氧氣幫助其化學性吸附(溢流)作用,有效提高表面吸附氧的數量,進而增進元件對於乙醇氣體的感測敏感度約18倍;再加上由於不同氣體與吸附氧之間感測效率(電子捐輸作用)的差異,提高了氧化鋅奈米棒陣列對於乙醇/一氧化碳氣體感測的選擇性(selectivity)約12倍。過程中不同密度與大小之金奈米顆粒可藉由前驅物濃度加以控制,且可由結晶型態推論水熱法合成金奈米粒子的成長機制,並探討顆粒大小與分散性對於一氧化碳氣體感測的影響。隨後,藉由光化學還原的水溶液製程,在室溫下將鈀奈米顆粒修飾氧化鋅奈米棒陣列,以進一步增進一氧化碳氣體感測性能。金屬鈀的溢流效應提升氧化鋅表面化學吸附氧的數量達3倍以上,此化學敏化作用分別減少不同濃度一氧化碳氣體感測的反應與回復時間約4~12和1~2倍,並降低感測溫度至260 °C。而鈀粒子在氣體感測的過程中會產生 氧化還原耦合對,使得鈀與氧化鋅的界面生成一額外的蕭基式能障,顯著地提高元件的背景電阻並增大元件與氣體反應後的電阻變化量,提升一氧化碳氣體的敏感度5.6倍且降低該氣體的偵測極限至10 ppm。
此外,利用具有螯合功能與自組裝特性的聚乙烯吡咯烷酮(PVP)作為載體,發展新穎的PVP輔助光化學還原法,除了能使受到光電子所吸引的鈀離子以較緩慢的速率移向氧化鋅表面進行還原,其疏水性聚乙烯基間的排斥作用避免奈米顆粒聚集形成團簇,有效調控鈀奈米顆粒於一維氧化鋅表面的生長形態與密度。固定前驅物濃度控制PVP的含量,即可調整鈀奈米粒子於氧化鋅上的沉積密度由14.3到3.1(單位面積, 15700 nm2)。而透過適當數量(14.3)的分離型鈀粒子修飾,元件於260 °C下對於500 ppm氫氣的感測敏感度可達1106,是未添加PVP製程所合成之團聚型鈀修飾元件的553倍。在室溫偵測的部分,其感測敏感度仍可達16.9,說明了此元件在室溫下即對於有爆炸安全疑慮的氫氣具有優異的敏感性。最後也藉由數據的分析以及與相關文獻的探討,提出了不同溫度區間的氫氣感測機制,包括一般200-300 °C的氧氣吸/脫附模式、60-120 °C的表面電導模式以及室溫下(約25-30 °C)的氫化鈀(PdHx)轉換模式。
The main target in this dissertation is aimed at fabricating high-performance gas sensors based on the ZnO nanostructuers with high surface area and active surface configuration. For this object, it is devoted to raise the gas sensitivity, sensing kinetics, selectivity to specific analyte and lower the operating temperature via several wet chemical processes composed of alkali solution growth, hydrothermal route and photochemical reduction. The substantial proceedings include fabrication and surface modification of ZnO nanorod arrays (NRs) as well as analysis of relevant physical and chemical properties, and sequentially put them to different gases sensing applications.
The ZnO NRs grown with Zn salt/KOH solution have a larger amount of surface defects (or surface states) than that grown with Zn salt/HMTA solution by its dissolution-growth behavior, which is verified by the photoluminescence analysis and the interfacial electrical characteristics between sputtering Au films and ZnO nanorods. It incurs a superior C2H5OH sensitivity in the former structure because more oxygen vacancy induces more free carriers for gas sensing reaction.
The Au nanonanoparticles with different size and density are loaded on the ZnO NRs by tuning the reactant (HAuCl4) concentration within hydrothermal procedure; moreover, the growth behavior and mechanism of those Au nanocrystals on ZnO surface are proposed and clearly elucidated. The enhancing surface activity may increase the number of chemisorbed oxygen on ZnO NRs by adequate Au decoration, and then the sensitivity to 600 ppm C2H5OH can be promoted higher than 18-fold. Furthermore, the selectivity for 600 ppm C2H5OH/CO (Sethanol/Scarbon monoxide) also can be enhanced more than 12-fold due to the discrepancy in electron donating effect of different analytes. In order to improve the CO gas sensing property, the Pd nanoparticles are attached on the surface of ZnO nanorods by photochemical deposition (PCD) at room temperature with ultraviolet (UV) light. After that, the sensitivity to 600 ppm CO of Pd decorated ZnO NRs (Pd/ZnO NRs) is increased about 6 times as compared with the pristine ZnO NRs, and the detection limit is reduced to 10 ppm. This improvement is ascribed to an enlargement of the difference in Schottky barrier height between Pd-ZnO while the transition between metallic Pd and redox couple is accompanied by work function variation. Besides, the number of chemisorbed oxygen on Pd/ZnO NRs is promoted more than 3-fold because of the catalytic Pd acting as a promoter of oxygen adsorption on the ZnO surface by spillover effect, which facilitates the sensing reaction and consequently decreases the response/recovery time as well as the optimum operating temperature.
For the sake of resolving the issue of Pd aggregation on ZnO surface, the PVP polymer (polyvinylpyrrolidone) possessed of chelating property and self-assembly characteristic (or called spatial effect) is introduced to the PCD. Thus one-step decoration of nearly monodispersed Pd nanoparticles with controllable density (14.3-3.1/unit area) on ZnO nanorods can be achieved by tailoring the mole ratio of reactant (PdCl2) to PVP (from 45 to 3) in this unique PVP-mediated photochemical reduction. It is demonstrated that the electron sensitization related to the transition of redox couple predominates the H2 sensing mechanism of Pd/ZnO NRs at 200-300 °C. As a consequence, the gas sensitivity to 500 ppm H2 of Pd/ZnO NRs is remarkably improved by around 553-fold (Ra/Rg=1106) at 260 °C through decorating 14.3 (/unit area) discrete Pd nanoparticles instead of the Pd clusters. Furthermore, the corresponding sensitivity at room temperature is 16.9 that is superior to some promising devices like Pd decorated multilayer graphene nanoribbon (Pd-MLGN) or Pd nanotube arrays, which manifests the outstanding H2 sensing performance in the specific Pd/ZnO NRs.Therefore, the present Pd/ZnO NRs have a giant potential and advantage for being applicable to the H2 gas sensor even at the room temperature. Eventually, the diverse H2 sensing mechanisms are proposed based on the Pd density dependence of sensitivity variation in those Pd/ZnO NRs at different temperature regions.
[1] N. Yamazoe, “Toward Innovations of Gas Sensor Technology”, Sens. Actuators, B 108 (2005) 2-14.
[2] Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu,” ZnO nanowire field-effect transistor and oxygen sensing property”, Appl. Phys. Lett. 85 (2004) 5923-5925.
[3] F.C. Huang, Y.Y. Chen and T.T. Wu, “A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods”, Nanotechnology 20 (2009) 065501.
[4] T. Seiyama, A. Kato, K. Fjishi, M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films”, Anal. Chem. 34 (1962), 1502-1503.
[5] H. Nanto, T. Minami, and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity”, J. Appl. Phys. 2 (1986) 482-484.
[6] S. Basu and A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application”, Sens. Actuators, B 22 (1994) 83-87.
[7] P. Mitra, A.P. Chatterjee 1, H.S. Maiti, “ZnO thin film sensor”, Mater. Lett. 35 (1998) 33-38.
[8] Z. L. Wang, “Nanostructure of zinc oxide”, Mater. Today, 7 (2004) 26-33.
[9] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, J. R. LaRoche,” ZnO nanowire growth and devices”, Mater. Sci. Eng., R 47 (2004) 1-47.
[10] S. Xu and Z. L. Wang, “One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties”, Nano Res. 4 (2011) 1013-1098.
[11] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors”, Appl. Phys. Lett. 84 (2004) 3654-3656.
[12] N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-Based Sensors”, small 6 (2010) 1705-1722.
[13] M. J. S. Spencer, “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Prog. Mater Sci. 57 (2012) 437-486.
[14] S. R. Morrison, “The Chemical Physics of Surface 2nd Edition” Plenum Press. New York and London Ch7 (1990) pp. 251-280.
[15] S. Brunauer, P. H. Emmett, and E. Teller, ‘’Adsorption of gases in multimolecular layers”, J. Amer. Chem. Soc. 60 (1938) 309-319.
[16] S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der Waals adsorption of gases”, J. Amer. Chem. Soc. 62 (1940) 1723-1732.
[17] J. E. Lennard-Jones,”Processes of adsorption and diffusion on solid surfaces”, Trans. Faraday Soc. 28 (1932) 333-359.
[18] M. E. Franke, T. J. Koplin, and U. Simon, “Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?”, small 2 (2006) 36-50.
[19] S. R. Morrison, “Surface Barrier Effects in Adsorption, Illustrated by Zinc Oxide”, Adv. Catal. 7 (1955) 259-301.
[20] N. Barsan, and U. Weimar, “Conduction model of metal oxide gas sensors”, J. Electroceram. 7 (2001) 143-167.
[21] M. Gratzel, “Photoelectrochemical Cells”, Nature 414 (2001) 338-344.
[22] P. Feng, Q. Wan, and T. H. Wang, “Contact-controlled sensing properties of flowerlike ZnO nanostructures” Appl. Phys. Lett. 87 (2005) 213111.
[23] A. Gurlo, “Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen”, ChemPhysChem 7 (2006) 2041-2052.
[24] D. Kohl, “Surface processes in the detection of reducing gases with SnO2-based devices”, Sens. Actuators, 18 (1989) 71 -113.
[25] H. Chon, and J. Pajares, “Hall effect studies of oxygen chemisorption on zinc oxide”, J. Catal. 14 (1969) 257-260.
[26] K. Tanaka and G. Blyholde, “Adsorbed Species of Oxygen on Dark and on Illuminated Zinc Oxide”, J. Chem. Soc., Chem. Commun. 21 (1971) 1343-1344.
[27] U. Lampe, M. Fleischer, N. Reitmeier, H. Meixner, J. B. McMonagle, and A. Marsch, “New Metal Oxide Sensors: Materials and Properties in Sensors”, (Eds.: W. Gcpel, J. Hesse, J. N. Zemel) VCH, Weinheim, 2 (1997) 29-30.
[28] J. Cunningham, J. J. Kelly, and A. L. Penny, Reactions involving electron transfer at semiconductor surfaces. I Dissociation of Nitrous Oxide over n-Type Semiconductors at 20°”, J. Phys. Chem. 74 (1970) 1992-2000.
[29] N. Yamazoe, G. Sakai, and K. G. Shimanoe,”Oxide semiconductor gas sensors”, Catal. Surv. Asia 7 (2003) 63-74.
[30] Y. J. Chen, C L Zhu and G Xiao, “Reduced-Temperature Ethanol Sensing Characteristics of Flower-Like ZnO Nanorods Synthesized by a Sonochemical Method”, Nanotechnology 17 (2006) 4537-4541.
[31] M. J. Madou, S. R. Morrison, “Chemical Sensing with Solid State Devices”, Academic Press, NewYork, (1989).
[32] S. Lenaertsa, M. Honoré, G. Huyberechts, J. Roggen,G. Maes, “In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K”, Sens. Actuators, B 19 (1994) 478-482.
[33] Y. H. Xiao, L. Z. Lu, A. Q. Zhang, Y. H. Zhang, L. Sun, L. Huo, and F. Li, “Highly Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO Nanosheets: High Percentage of Exposed (100) Facets Working Together with Surface Modification with Pd Nanoparticles”, ACS Appl. Mater. Interfaces 4 (2012) 3797-3804.
[34] S. J. Kim, C. W. Na, I. S. Hwang, J. H. Lee, “One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection”, Sens. Actuators, B 168 (2012) 83-89.
[35] N. Y amaze, “New approaches for improving semiconductor gas sensors”, Sensors and Actuators B, 5 (1991) 7-19.
[36] A. Rothschild and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors”, J. Appl. Phys. 95 (2004) 6374-6380.
[37] A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures”, Annu. Rev. Mater. Res. 34 (2004) 151-180.
[38] S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe, “Electronic Interaction between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensor”, Jpn. J. Appl. Phys. 27 (1988) 1798-1802.
[39] T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, “Sensing Behavior of CuO-Loaded SnO2 Element for H2S Detection”, Chem. Lett. 20 (1991) 575-578.
[40] J. H. Kim, W. S. Kim, and K. J. Yong, “CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing”, J. Phys. Chem. C 116 (2012) 15682-15691.
[41] Y. J. Chen, C. L. Zhu, L. J. Wang, P. Gao, M. S. Cao and X. L. Shi, “Synthesis and enhanced ethanol sensing, characteristics of α-Fe2O3/SnO2 core–shell Nanorods”, Nanotechnology 20 (2009) 045502.
[42] J. Zhang, X. H. Liu, L. W. Wang, T. L. Yang, X. Z. Guo, S. H. Wu, S. Wang and S. M. Zhang, “Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles”, Nanotechnology 22 (2011) 185501.
[43] J. X. Wang, X. W. Sun, Y. Yang, K. K. A Kyaw, X. Y. Huang, J. Z. Yin, J. Wei and H. V. Demir, “Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties”, Nanotechnology 22 (2011) 325704.
[44] C. W. Na, H.S. Woo, Il-D. Kim and J. H. Lee, “Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor”, Chem. Commun. 47 (2011) 5148-5150.
[45] D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi, and R. A. Fischer, “Co3O4/ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications”, ACS Appl. Mater. Interfaces 4 (2012) 928-934.
[46] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles”, Nano Lett. 5 (2005) 667-673.
[47] D. J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild, and I. D. Kim, “Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading”, Adv. Funct. Mater. 20 (2010) 4258-4264.
[48] G. Sberveglieri, “Gas sensors: principles, operation, and development”, Boston Dordrecht: Kulwer Academic Publishers Ch4 (1992) pp. 70-76.
[49] Y. Zeng, Z. Lou, L. Wang, B. Zou, T. Zhang, W. T. Zheng, G. T. Zou, “Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure”, Sens. Actuators, B 156 (2011) 395-400.
[50] L. L. Xing, C. H. Ma, Z. H. Chen, Y. J. Chen and X. Y. Xue, “High gas sensing performance of one-step-synthesized Pd-ZnO nanoflowers due to surface reactions and modifications”, Nanotechnology 22 (2011) 215501.
[51] S. H. Wei, Y. Yu, M. H. Zhou, “CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method”, Mater. Lett. 64 (2010) 2284-2286.
[52] C. C. Li, L. M. Li, Z. F. Du, H. C. Yu, Y. Y. Xiang, Y. Li, Y. Cai and T. H. Wang, “Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods”, Nanotechnology 19 (2008) 035501.
[53] N. G. Cho, H. S. Woo, J. H. Lee and I. D. Kim, “Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial Template”, Chem. Commun. 47 (2011) 11300-11302.
[54] L. L. Wang, Z. Lou, T. Fei and T. Zhang, “Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties”, J. Mater. Chem. 22 (2012) 4767-4771.
[55] J. Zhang, X. H. Liu, S. H. Wu, B. Q. Cao, S. H. Zheng, “One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance”, Sens. Actuators, B 169 (2012) 61-66.
[56] S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang and H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles”, Nanotechnology 21 (2010) 415502.
[57] X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced Optical and Sensing Properties of One-Step Synthesized Pt-ZnO Nanoflowers”, J. Phys. Chem. C 114 (2010) 18607-18611.
[58] Y.H. Lin, Y. C. Hsueh, P. S. Lee, C. C. Wang, J. M. Wu, T. P. Perng and H. C. Shih, “Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum”, J. Mater. Chem. 21 (2011) 10552-10558.
[59] Y. Zhang, J. Q. Xu, P. C. Xu, Y. H Zhu, X. D. Chen and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance”, Nanotechnology 21 (2010) 285501.
[60] X. J. Wang, W. Wang, Y. L. Liu, “Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO”, Sens. Actuators, B 168 (2012) 39-45.
[61] Y. Zhang, Q. Xiang, J. Q. Xu, P. C. Xu, Q. Y. Pan and F. Li, “ Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances”, J. Mater. Chem. 19 (2009) 4701-4706.
[62] P. G. Hu, G. J. Du, W. J. Zhou, J. J. Cui, J. J. Lin, H. Liu, D. Liu, J. Y. Wang, and S. W. Chen, “Enhancement of Ethanol Vapor Sensing of TiO2 Nanobelts by Surface Engineering”, ACS Appl. Mater. Interfaces 2 (2010) 3263-3269.
[63] I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, and J. H. Lee, “Facile Control of C2H5OH Sensing Characteristics by Decorating Discrete Ag Nanoclusters on SnO2 Nanowire Networks”, ACS Appl. Mater. Interfaces 3 (2011) 3140-3145.
[64] J. Q. Xu, J. J. Han, Y. Zhang, Y. Sun, B.Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors” Sens. Actuators, B 132 (2008) 334-339.
[65] X. L. Gou, G. X. Wang, J. Yang, J. S. Park and D. Wexler, “Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons”, J. Mater. Chem. 18 (2008) 965-969.
[66] M. K. Kumar, L. K. Tan, N. N. Gosvami, and H. Gao, “Titania Nanofilm with Electrical Switching Effects upon Hydrogen/Air Exposure at Room Temperature”, J. Phys. Chem. C 113 (2009) 6381-6389.
[67] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption”, Appl. Phys. Lett. 91 (2007) 053111.
[68] S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters”, Phys. Rev. B 58 (1998) 14102-14105.
[69] C. Klingshirn, “High-density phases of ZnO: Structural and compressive parameters”, phys. stat. sol. 244 (2007) 3027-3073.
[70] M. J. S. Spencer, “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Prog. Mater Sci. 57 (2012) 437-486.
[71] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem. 14 (2004) 2575-2591.
[72] Q Ahsanulhaq, A Umar and Y B Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties”, Nanotechnology 18 (2007) 115603.
[73] J. B. Han, F. G. Fan, C. X., S. H. Lin, M. We, X. Duan and Z. L. Wang, “ZnO nanotube-based dye-sensitized solar cell and its application in self-powered Devices”, Nanotechnology 21 (2010) 405203.
[74] J. Y. Park, S. W. Choi and S. S. Kim, “A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer Templates”, Nanotechnology 21 (2010) 475601.
[75] D. Pradhan, M. Kumar, Y. Ando, and K. T. Leung, “Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties”, ACS Appl. Mater. Interfaces 1 (2009) 789-796.
[76] M. K. Kim, D. K. Yi, and U. Paik, Tunable, “Flexible Antireflection Layer of ZnO Nanowires Embedded in PDMS” Langmuir 26 (2010) 7552-7554.
[77] K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-Templated Hydrothermal Growth of Vertically Aligned Single-Crystal ZnO Nanorods and Morphological Transformations Using Structural Polarity”, Adv. Funct. Mater. 20 (2010) 3055-3063.
[78] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes”, Chem. Mater. 13 (2001) 4395-4398.
[79] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem. 64 (1960) 688-691.
[80] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P. D.Yang, “Room-temperature Ultraviolet Nanowire Nanolasers”, Science 292 (2001) 1897-1899.
[81] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13 (2003) 9-24.
[82] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13 (2001) 113-116.
[83] W. Lee, M. C. Jeong, J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation”, Acta Mater. 52 (2004) 3949-3957
[84] J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. 14 (2002) 215-218.
[85] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc. 125 (2003) 4430-4431.
[86] Y. C. Wang, I. C. Leu, and M. H. Hon, “Dielectric Property and Structure of Anodic Alumina Template and Their Effects on The Electrophoretic Deposition Characteristics of ZnO Nanowire Arrays”, J. Appl. Phys.95 (2004) 1444-1449.
[87] G. She.; X. Zhang, W. Shi, X Fan, J. C. Chang, C. Lee, S. Lee, C. Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates”, Appl. Phys. Lett. 92 (2008) 053111.
[88] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angew. Chem. Int. Ed. 42 (2003) 3031-3034.
[89] X. F. Wu, H. Bai, C. Li, G. Lu and G. Q. Shi, “Controlled One-Step Fabrication of Highly Oriented ZnO Nanoneedle/Nanorods Arrays at Near Room Temperature”, Chem. Commun. 15 (2006) 1655-1657.
[90] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution”, Adv. Mater. 15 (2003) 464-466.
[91] S. C. Liou, C. S. Hsiao, and S. Y. Chen, “Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution”, J. Cryst. Growth 274 (2005) 438-446.
[92] C. K. Xu, P. Shin, L. L. Cao, and D. Gao,” Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells”, J. Phys. Chem. C114 (2010) 125-129.
[93] C. K. Xu, J. M. Wu, U. V. Desai, and D Gao,” Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells”, J. Am. Chem. Soc. 133 (2011) 8122-8125.
[94] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem. 12 (2002) 3773-3778.
[95] Y. Sun, D. J. Riley, and M. N. R. Ashfold,” Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates”, J. Phys. Chem. B 110 (2006) 15186-15192.
[96] B. Liu and H. C. Zeng, “Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures”, Langmuir 20 (2004) 4196-4204.
[97] J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor”, Sens. Actuators, B 84 (2002) 258-264.
[98] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors”, Prog. Mater Sci. 54 (2009) 1-67.
[99] Y. B. Hahn, R. Ahmad and Nirmalya Tripathy, “Chemical and biological sensors based on metal oxide nanostructures”, Chem. Commun. 48 (2012) 10369-10385.
[100] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally Grown Oriented ZnO Nanorod Arrays for Gas Sensing Applications”, Nanotechnology 17 (2006) 4995-4998.
[101] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu and W. F. Zhang, “Size Dependence of Gas Sensitivity of ZnO Nanorods”, J. Phys. Chem. C 17 (2007) 1900-1903.
[102] J. Y. Park, D. E. Song and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays”, Nanotechnology 19 (2008) 105503.
[103] Y. Zeng, T. Zhang, M. X. Yuan, M. H. Kang, G. Y. Lu, R. Wang, H. T. Fan, Y. He, H. B. Yang,” Growth and selective acetone detection based on ZnO nanorod arrays”, Sens. Actuators, B 143 (2009) 93-98.
[104] D. Barreca, D. Bekermann, E. omini, A Devi, R. A. Fischer, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri and E. Tondello, “Urchin-like ZnO nanorod arrays for gas sensing applications”, CrystEngComm 12 (2010) 3419-3421.
[105] J. Yi, J. M. Lee, W. I. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors”, Sens. Actuators, B 155 (2011) 264-269.
[106] S. Q. Tian, F. Yang, D. Zeng, and C. S. Xie, “Solution-Processed Gas Sensors Based on ZnO Nanorods Array with an Exposed (0001) Facet for Enhanced Gas-Sensing Properties”, J. Phys. Chem. C 116 (2012) 10586-10591.
[107] T. J. Hsueh, Y. W. Chen, S.J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures”, J. Electrochem. Soc. 154 (2007) J393-J396.
[108] M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor”, Appl. Phys. Lett. 93 (2008) 263103.
[109] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen,” Laterally grown ZnO nanowire ethanol gas sensors”, Sens. Actuators, B 126 (2007) 473-477.
[110] X. G. Han, X. Zhou, Y. Jiang and Z. X. Xie, “The preparation of spiral ZnO nanostructures by top-down wet-chemical etching and their related properties”, J. Mater. Chem. 22 (2012) 10924-10928.
[111] X. G. Han, H. Z. He, Q. Kuang, X. Zhou, X. H. Zhang, T. Xu, Z. X. Xie, and L. S. Zheng, “Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites”, J. Phys. Chem. C 113 (2009) 584-589.
[112] M. Ohyama, H. Kozuka, T. Yoko, Sol-Gel Preparation of ZnO Films with Extremely Preferred Orientation along (002) Plane from Zinc Acetate Solution, Thin Solid Films 306 (1997) 78-85.
[113] J. X. Wang, X. W. Sun, S. S. Xie, Y. Yang, H. Y. Chen, G. Q. Lo, and D. L. Kwong, “Preferential Growth of SnO2 Triangular Nanoparticles on ZnO Nanobelts”, J. Phys. Chem. C 111 (2007) 7671-7675.
[114] W. An, X. J. Wu, and X. C. Zeng, “Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study”, J. Phys. Chem. C 112 (2008) 5747-5755.
[115] H. Xu, R. Q. Zhang, and S. Y. Tong,” Interaction of O2, H2O, N2, and O3 with stoichiometric and reduced ZnO surface”, Phys. Rev. B 82 (2010) 155326.
[116] F. Xu, Y. O. Lu, Y. Xie, and Y. F. Liu, “Synthesis and Photoluminescence of Assembly-Controlled ZnO Architectures by Aqueous Chemical Growth”, J. Phys. Chem. C 113 (2009) 1052-1059.
[117] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO-nanostructures, defects, and devices”, Mater. Today 10 (2007) 40-48.
[118] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurii, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge,” Defects in ZnO Nanorods Prepared by a Hydrothermal Method”, J. Phys. Chem. B 110 (2006) 20865-20871.
[119] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt,” Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Appl. Phys. Lett. 68 (1996) 403-405.
[120] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt,” Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79 (1996) 7983-7990.
[121] M. Guo, P. Diao, S. M. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparingconditions” J. Solid State Chem. 178 (2005) 1864-1873
[122] G. Z. Xing, D. D. Wang, J. B. Yi, L. L. Yang, M. Gao, M. He, J. H. Yang, J. Ding, T. Chien Sum, and T. Wu, “Correlated d0 ferromagnetism and photoluminescence in undoped ZnO nanowires”, Appl. Phys. Lett. 96 (2010) 112511.
[123] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edition, John Wiley & Sons, Inc. New Jersey (2007) pp. 135-136.
[124] K. Liu, M. Sakurai, M. Y. Liao, and M. Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles”, J. Phys. Chem. C 114 (2010) 19835-19839
[125] Y. Zhang, J. Q. Xu, Q. Xiang, H. Li, Q. G. Pan, and P. C. Xu, “Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties”, J. Phys. Chem. C 113 (2009) 3430-3435.
[126] Y. Jiao, H. J. Zhu, M. J. Zhou, X. F. Wang, and Q. Li, ”Suppression of Green Emission in ZnO Nanorods-A Discussion on Surface and Interior Structural Quality Manipulation”, J. Phys. Chem. C 114 (2010) 208-211.
[127] A. D. Krawitz, Introduction to Diffraction in Materials, Science, and Engineering, John Wiley &. Sons, Inc. USA (2001) pp. 343-344.
[128] T. Voss, C. Bekeny, L. Wischmeier, H. Gafs, S. Börner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires”, Appl. Phys. Lett. 89 (2006) 182107.
[129] A. B. Djurisic and Y. H. Leung, ”Optical Properties of ZnO Nanostructures”, small 2 (2006) 944-961.
[130] J. Y. Dong, Y. J. Hsu, D. S. H. Wong, and S. Y. Lu, ”Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method”, J. Phys. Chem. C 114 (2010) 8867-8872.
[131] D. Li, Y. H. Leung, A. B. Djurišiæ, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, ”Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods”, Appl. Phys. Lett. 85 (2004) 1601-1603.
[132] A. Janotti and C. G. Van de Walle, ” Native point defects in ZnO”, Phys. Rev. B 76 (2007) 165202.
[133] M. Chen, Z. H. Wang, D. M. Han, F. B. Gu, G. S. Guo, ”High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials”, Sens. Actuators, B 157 (2011) 565-574.
[134] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen, ”X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Appl. Surf. Sci. 158 (2000)134-140.
[135] H. H. Wang, S. H. Baek, J. J. Song, J. H. Lee and S. W. Lim, “Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays”, Nanotechnology 19 (2008) 075607.
[136] F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J. R. Morante, M. A. Juli, S. Mathur and A. Romano-Rodriguez, “Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires”, Adv. Funct. Mater. 18 (2008) 2990-2994.
[137] L. M. Chen, L. B. Luo, Z. H. Chen, M. L. Zhang, J. A. Zapien, C. S. Lee, and S. T. Lee,” ZnO/Au Composite Nanoarrays As Substrates for Surface-Enhanced Raman Scattering Detection”, J. Phys. Chem. C 114 (2010) 93-100.
[138] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents”, J. Catal. 231 (2005) 105-114.
[139] F. Xu, P. Zhang, A. Navrotsky, Z. Y. Yuan, T. Z. Ren, M. Halasa, and B. L. Su, “Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity”, Chem. Mater. 19 (2007) 5680-5686.
[140] A. Roucoux, J. Schulz, and H. Patin, “Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?”, Chem. Rev. 102 (2002) 3757-3778.
[141] H. Hirai, H. Chawanya, N. Toshima, “Colloidal Palladium Protected with Poly (n-vinyl-2-pyrrolidone) for Selective Hydrogenation of Cyclopentadiene”, React. Polym. 3 (1985) 127-141.
[142] J. L. G, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. J. Yacaman, “Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants”, Nano Lett. 2 (2002) 397-401.
[143] B. Ingham, T. H. Lim, C. J. Dotzler, A. Henning, M. F. Toney, and R. D. Tilley, “How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth”, Chem. Mater. 23 (2011) 3312-3317.
[144] Q. Xiang, G. F. Meng, H. B. Zhao, Y. Zhang, H. Li, W. J. Ma, and J. Q. Xu, ”Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing”, J. Phys. Chem. C 114 ( 2010) 2049-2055.
[145] R. K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar, ”Au Decorated Zinc Oxide Nanowires for CO Sensing”, J. Phys. Chem. C 113 (2009) 16199-16202.
[146] S. J. Chang, T. J. Hsueh, I. C. Chen and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502.
[147] X. H. Liu, J. Zhang, X. Z. Guo, S. H. Wu and S. R. Wang, “Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods”, Nanoscale 2 (2010) 1178-1184.
[148] M. Yuasa, T. Kida, and K. Shimanoe, “Preparation of a Stable Sol Suspension of Pd-Loaded SnO2 Nanocrystals by a Photochemical Deposition Method for Highly Sensitive Semiconductor Gas Sensors”, ACS Appl. Mater. Interfaces 4 (2012) 4231-4236.
[149] J. Domenech and A. Prieto, “Stability of ZnO Particles in Aqueous Suspensions under UV Illumination”, J. Phys. Chem. 90 (1986) 1123-1126.
[150] H. Yoshiki, K. Hashimoto, and A. Fujishima, “Reaction Mechanism of Electraless Metal Deposition Using ZnO Thin Film (I): Process of Catalyst Formation”, J. Electrochem. Soc. 142 (1995) 428-432.
[151] H. Yoshiki, H. Kitahara, K. Hashimoto, and A. Fujishima, “Pattern Formation of Cu Layer by Photocatalytic Reaction of ZnO Thin Film”, J. Electrochem. Soc. 142 (1995) L235-L237.
[152] G. Williams, B. Seger, and P. V. Kamat,” TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide”, ACS Nano 2 (2008) 1487-1491.
[153] R. Huck, U. Bottger, D. Kohl, G. Heiland, “Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits”, Sens. Actuators 17 (1989) 355-359.
[154] A. I. Bhatt, A. Mechler, L. L. Martin and A. M. Bond, “Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation”, J. Mater. Chem. 17 (2007) 2241-2250.
[155] R. Massard, D. Uzio, C. Thomazeau, C. Pichon, J. L. Rousset, J. C. Bertolini, “Strained Pd overlayers on Ni nanoparticles supported on alumina and catalytic activity for buta-1,3-diene selective hydrogenation”, J. Catal. 245 (2007) 133-143.
[156] J. F. Moulder, “Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data”, Eden Prairie, Minn.: Physical Electronics (1995)
[157] M. P. Hyman, V. M. Lebarbier, Y. Wang, A. K. Datye, and J. M. Vohs, “A Comparison of the Reactivity of Pd Supported on ZnO and ZnO(0001)”, J. Phys. Chem. C 113 (2009) 7251-7259.
[158] I. Aruna, F. E. Kruis, S. Kundu, M. Muhler, R. Theissmann, and M. Spasova, “CO ppb sensors based on monodispersed SnOx: Pd mixed nanoparticle layers: Insight into dual conductance response”, J. Appl. Phys. 105 (2009) 064312.
[159] D. F. Gu and S. W. K. Dey, “Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2”, Appl. Phys. Lett. 89 (2006) 082907.
[160] M. Harada, and Y. Inada, “In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions”, Langmuir 25 (2009) 6049-6061.
[161] T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition”, J. Phys. Chem. B 103 (1999) 3818-3827.
[162] F. Durap, O¨. Metin, M. Aydemir and S. O¨zkar, “New Route to Synthesis of PVP-Stabilized Palladium(0) Nanoclusters and Their Enhanced Catalytic Activity in Heck and Suzuki Cross-Coupling Reactions”, Appl. Organomet. Chem. 23 (2009) 498-503.
[163] Q. M. Shen, Q. H. Min, J. J. Shi, L. P. Jiang, J. R. Zhang, W. H. Hou, and J. J. Zhu, “Morphology-Controlled Synthesis of Palladium Nanostructures by Sonoelectrochemical Method and Their Application in Direct Alcohol Oxidation”, J. Phys. Chem. C 113 (2009) 1267-1273.
[164] Z. Q. Tan, H. Y. Abe and S. S. Ohara, “Ordered Deposition of Pd nanoparticles on Sodium Dodecyl Sulfate-Functionalized Single-Walled Carbon Nanotubes”, J. Mater. Chem. 21 (2011) 12008-12014.
[165] Z. T. Zhang, B. Zhao, and L. M. Hu, “PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes”, J. Solid State Chem. 121 (1996) 105-110.
[166] J. H. Zhang, H. Y. Liu, Z. L. Wang, “N. B. Ming, Z. R. Li, and A. S. Biris, Polyvinylpyrrolidone-Directed Crystallization of ZnO with Tunable Morphology and Bandgap”, Adv. Funct. Mater. 17 (2007) 3897-3905.
[167] A. I. Inamdar, S. H. Mujawar, V. Ganesan and P. S. Patil, “Surfactant-Mediated Growth of Nanostructured Zinc Oxide Thin Films via Electrodeposition and Their Photoelectrochemical Performance”, Nanotechnology 19 (2008) 325706.
[168] H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, “Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media”, J. Phys. Chem. B 109 (2005) 18260-18266.
[169] S. F. Wei, J. S. Lian, Q. Jiang, “Controlling Growth of ZnO Rods by Polyvinylpyrrolidone (PVP) and Their Optical Properties”, Appl. Surf. Sci. 255 (2009) 6978-6984.
[170] X. Y. Xu, C. X. Xu, Y. Lin, T. Ding, S. J. Fang, Z. L. Shi, W. W. Xia, and J. G. Hu, “Surface Photoluminescence and Magnetism in Hydrothermally Grown Undoped ZnO Nanorod Arrays”, Appl. Phys. Lett. 100 (2012) 172401.
[171] N. G. Cho, G. C. Whitfield, D. J. Yang, H. G. Kim, H. L. Tuller, and I. D. Kim, “Facile Synthesis of Pt-Functionalized SnO2 Hollow Hemispheres and Their Gas Sensing Properties”, J. Electrochem. Soc 157 (2010) J435-J439.
[172] J. L. Johnson, A. Behnam , S. J. Pearton , and A. Ural, “Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks”, Adv. Mater. 22 (2010) 4877-4880.
[173] S. C. Tsang, C. D. A. Bulpitt, P. C. H. Mitchell, and A. J. Ramirez-Cuesta, “Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor”, J. Phys. Chem. B 105 (2001) 5737-5742.
[174] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. 5 (2000) 1012-1015.
[175] Q. Wan, C. L. Lin, X. B. Yu and T. H. Wang, “Room-Temperature Hydrogen Storage Characteristics of ZnO Nanowires”, Appl. Phys. Lett. 84 (2004) 124-126.
[176] H. Pan, J. Z. Luo, H. Sun, Y. P. Feng, C. Poh, and J. Y. Lin, “Hydrogen Storage of ZnO and Mg Doped ZnO Nanowires”, Nanotechnology 17 (2006) 2963-2967.
[177] C. Y. Chen, J. K. Chang, W. T. Tsai and C. H. Hung, “Uniform Dispersion of Pd nanoparticles on Carbon Nanostructures Using a Supercritical Fluid Deposition Technique and Their Catalytic Performance towards Hydrogen Spillover”, J. Mater. Chem. 21 (2011) 19063-19068.
[178] Y. Sun and H. H. Wang, High-Performance, “Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles”, Adv. Mater. 19 (2007) 2818-2823.
[179] M. A. Lim, D. H. Kim, C. O. Park, Y. W. Lee, S. W.Han, Z. Y. Li, R. S. Williams, and I. Park, A New Route toward Ultrasensitive, “Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates”, ACS Nano 6 (2012) 598-608.