簡易檢索 / 詳目顯示

研究生: 孫郁琳
Sun, Yu-Lin
論文名稱: 利用置換反應製備雙金屬材料及其應用
Fabrication and applications of bimetallic material prepared by galvanic displacement reaction
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 置換反應銅鋁雙金屬鈀鎳雙金屬乙醇氧化
外文關鍵詞: Galvanic displacement reaction, Copper-Aluminum bimetallic, Palladium-Nickel foam bimetallic, Electro-oxidation ethanol.
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含了兩個部分:
    (1)利用置換反應將銅離子置換到金屬鋁表面,以增強其電導性。
    (2)在水溶液與離子液體中將鈀離子還原至發泡鎳電極,並應用在乙醇催化中。
    第一部分:在實驗中,在鋁金屬上置換一層銅層,藉此增加基材的導電性。在此選用了添加螯合劑的鹼性水溶液,並改變置換溶液濃度、pH值、反應時間以及反應溫度等條件,且使用開路電位對時間的變化觀察整個反應的進行,最後在鋁金屬表面形成連續且平整的銅層。使用掃描電子顯微鏡觀察表面形貌和使用能量分散式光譜儀(EDX)及X光繞射儀分析證實了銅鋁置換反應的發生。並使用表面元素分析mapping觀察金屬分布狀況、原子力顯微鏡(AFM)鑑定置換過後表面的平整性以及使用四點探針量測電阻值的變化,證實銅鋁金屬的導電度優於金屬鋁。
    第二部分:發泡鎳金屬可以在含有PdCl2的氯化鈉溶液中產生自發性的沉積置換反應。藉由改變鹽類種類、比例、氯化鈀濃度及置換時間、酸鹼值等參數得到不同的結果,將置換後的金屬材料以附有能量散射光譜儀的掃描式電子顯微鏡觀察置換前後形貌的變化並確定欲置換的金屬存在和含量與分布情形,同時也使用X光粉末繞射儀來鑑定晶相。進一步的將置換過後的鈀鎳雙金屬做為乙醇氧化的催化材料,並使用循環伏安法(CV)得知鈀鎳雙金屬電極的催化訊號峰會優於鈀電極及鎳電極的催化訊號峰。

    This dissertation includes two parts:
    (1)Copper deposited on aluminum by galvanic displacement in water solution to improve the electric conductivity, and
    (2)Deposition of Metal palladium on the surface of nickel foam in water solution and ionic liquids for ethanol electro-oxidation.

    In the first part, the electrical conductivity of substrate can be improved by the replacement of copper on aluminum. To conduct the galvanic displacement, the alkaline solutions containing the chelating agents were used with some different experimental conditions, such as, changing the concentration of copper ions, pH value, time and temperature for displacement. We can monitor the overall reaction by recording the changes of open circuit potential in the displacement (OCP-t). Under certain conditions, a continuous and smooth copper layer can be deposited on aluminum surface. The surface morphology was characterized by scanning electron microscopy and the galvanic displacement was confirmed by EDX and XRD analysis. And, the distribution of metal was invetigated by elemental mapping. Atomic force microscopy (AFM) was used to identify the roughness of the surface of Cu/Al metal. The resistance of metal was measured by the four-point probe method. The result shows that the conductivity of Cu/Al bimetallic is better than aluminum.

    In the second part of this study, the surface of nickel foam was modified by spontaneous deposition of Pd carried out in solutions of NaCl containing PdCl2. By tuning the conditions, such as, the type of salts, the concentration and proportion between palladium chloride and salt, the replacement time, and pH value, the morphologies of Pd/Ni foam were examined by scanning electron microscopy (SEM), and the compositions of the deposits were examined by energy dispersive X-ray spectroscopy (EDS or EDX). The crystalline phases of the samples were characterized by X-ray diffraction (XRD). The electrochemical activity of the as-prepared electrode for ethanol oxidation has been investigated by cyclic voltammetry (CV). The results show that the oxidation peak current of the Pd/Nickel foam electrode is better than that of Pd electrode and nickel foam.

    中文摘要 .............................................................................................. I 英文摘要 ............................................................................................. II 圖目錄 ............................................................................................... VI 表目錄 ............................................................................................ XIV 第一章 緒論 ...................................................................................... 1 1.1 置換反應的原理及應用 .................................................... 1 1.2 鋁銅金屬的簡介及應用 .................................................... 4 1.3 醇類電催化(electrocatalysis) 和鈀鎳雙金屬應用 .......... 6 1.4 螯合劑對置換反應的影響 ................................................ 8 1.5 離子液體(ionic liquid) ....................................................... 9 1.6 研究動機及目的 .............................................................. 14 第二章 實驗原理............................................................................ 15 2.1 電化學反應 ( Electrochemical reaction) ........................ 15 2.2 循環伏安法 (Cyclic voltammetry, CV) .......................... 17 2.3 計時安培法 (Amperometric i-t curve) ........................... 19 2.4 開路電位法 (Open circuit potential-time, OCP-t) .......... 20 2.5 AFM 表面粗糙度之定義 ................................................ 20 第三章 實驗儀器與試劑 ............................................................... 21 3.1 實驗儀器 .......................................................................... 21 3.2 藥品與試劑 ...................................................................... 23 3.3 基材處理方法 .................................................................. 28 第四章 結果與討論 ....................................................................... 29 4.1 鋁絲電拋光之電化學行為 .............................................. 29 4.2 酸性銅離子溶液(Pure acidic copper ion solution) ......... 31 4.3 螯合劑的影響 .................................................................. 36 4.4 銅-鋁雙金屬結構鑑定 ..................................................... 71 4.5 鈀-鎳金屬置換與乙醇催化 ............................................. 80 第五章 結論 .................................................................................. 115 第六章 參考文獻.......................................................................... 116

    1.Seddon, K. R., Journal of Chemical Technology and Biotechnology 1997, 68, 351-356.
    2.Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S., Advanced materials 2010, 22 (11), 1196-221.
    3.(a) Djokić, S. S., Journal of The Electrochemical Society 1996, 143 (4), 1300; (b) Watanabe, H., Journal of The Electrochemical Society 1997, 144 (2), 471.
    4.Dmitri A. Brevnov, T. S. O., Gabriel P. Lo´pez, Plamen Atanassov,, J. Phys. Chem. B 2004, 108, 17531-17536.
    5.Albert Gute´s, C. C., Roya Maboudian, J. AM.CHEM.SOC. 2010, 132 (1476-1477).
    6.Bard, A. J., Faulkner, Larry R., Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons Inc, 2000.
    7.Cochran, J., Mapother, D., Mould, R., Physical Review 1956, 103 (6), 1657-1669.
    8.Millberg, L. S., How Products are Made 2007, 1.
    9.Roy, S., D, Satyaveer Singh, Suwas, Satyam, Kumar, S., Chattopadhyay, K., Materials Science and Engineering: A 2011, 528 (29-30), 8469-8478.
    10.Tsuji, N., Iwata Taku, Sato Masahide, Fujimoto Shinji, Minamin Yoritoshi, Science and Technology of Advanced Materials 2004, 5 (1-2), 173-180.
    11.World Coin News. 1992.
    12.Sabrina G. Sobel, S. C., Journal of Chemical Education 2010, 87 (6), 616-618.
    13.(a) Wiesner, K., Z. ELEKTROCHEMIE 1943, 49, 164-166; (b) R. Brdicka, K. W., Collect. Czech. Chem. Commun. 1947, 12, 39-63.
    14.(a) Wang, Y.-L., Zhao, Yong-Qing, Xu, Cai-Ling, Zhao, Dan-Dan, Xu, Mao-Wen, Su, Zhong-Xing, Li, Hu-Lin, Journal of Power Sources 2010, 195 (19), 6496-6499; (b) Claudio Bianchini, P. K. S., Chemical Reviews 2009, 109, 4183-4206.
    15.(a) Hao Yu, E., Scott, Keith Reeve, Robert W., Journal of Electroanalytical Chemistry 2003, 547 (1), 17-24; (b) Liu Jianping, Y. J., Xu Changwei, Jiang San Ping, Tong Yexiang,, Electrochemistry Communications 2007, 9 (9), 2334-2339.
    16.M. A. Sattar, B. E. C., Electrochimica Acta 1969, 14, 695-710.
    17.(a) Kugai, J., Miller, Jeffrey T., Guo, Neng, Song, Chunshan, Journal of Catalysis 2011, 277 (1), 46-53; (b) Serov, A., Martinez, Ulises, Falase, Akinbayowa, Atanassov, Plamen, Electrochemistry Communications 2012, 22, 193-196.
    18.Chen Jinyao, Z. C. X., Zhi Matthew M., Wang Kewei, Deng Lulu, Xu Gu, Electrochimica Acta 2012, 66, 133-138.
    19.Zhang, H., Jin, M., Xia, Y., Chemical Society reviews 2012, 41 (24), 8035-49.
    20.Bianchi, I., Guerrini, E., Trasatti, S., Chemical Physics 2005, 319 (1-3), 192-199.
    21.Telli, E., Solmaz, Ramazan, Kardaş, Gülfeza, Russian Journal of Electrochemistry 2011, 47 (7), 811-818.
    22.Cheng, Y., Liu, Yao,; Cao, D., Wang, Guiling, Gao, Yinyi, Journal of Power Sources 2011, 196 (6), 3124-3128.
    23.(a) Shu Wang, B. Y., Tingting Zhang, Gang Yu, Shubo Deng, Jun Huang, Industrial & Engineering Chemistry Research 2010, 2010 (49), 4561-4565; (b) Yang B., Y. G., Shuai D., Chemosphere 2007, 67 (7), 1361-7.
    24.Wilkes, J. S., Green Chemistry 2002, 4 (2), 73-80.
    25.Kenneth R. Seddon, A. S., María-José Torres, Pure Appl. Chem. 2000, 72, 2275-2287.
    26.Chen, P. Y., Chemistry(The Chinese Chem. Soc., Taipei) 2006, 64 (2), 235-258.
    27.(a) Adams, B. D., Ostrom, Cassandra K., Chen, Aicheng, Journal of The Electrochemical Society 2011, 158 (4), B434; (b) Verlato, E., Cattarin, Sandro,; Comisso, N., Guerriero, Paolo,; Musiani, M., Vázquez-Gómez, Lourdes, Electrochemistry Communications 2010, 12 (8), 1120-1123.
    28.Huiping Zhang, Z. J., Xianli Liu, Jianshe Lian, Surface Review and Letters 2006, 13 (4), 471-478.
    29.Melo, L. C., Lima-Neto, Pedro, Correia, Adriana N.,, Journal of Applied Electrochemistry 2010, 41 (4), 415-422.
    30.YANG Fang-Zu, Y. B., LU Bin-Bin, HUANG Ling, XU Shu-Kai, ZHOU Shao-Min, Acta Phys. -Chim. Sin. 2006, 22 (11), 1317-1320.
    31.Yi-Mao Lin, S.-C. Y., Applied Surface Science 2001, 178, 116-126.
    32.(a) Li, J., Kohl, Paul A., Journal of The Electrochemical Society 2002, 149 (12), C631; (b) PauliukaitĖ, R., Stalnionis, G., Jusys, Z., Vaškelis, A., Journal of Applied Electrochemistry 2006, 36 (11), 1261-1269.
    33.Ai, J. H., Liu, S. P., Widharta, N. A.,; Adhikari, S., Anderegg, J. W., Hebert, K. R.,, The Journal of Physical Chemistry C 2011, 115 (45), 22354-22359.
    34.Singh R. N., S. A., Anindita,, Carbon 2009, 47 (1), 271-278.

    下載圖示 校內:2018-08-15公開
    校外:2018-08-15公開
    QR CODE