| 研究生: |
陳昱丞 Chen, Yu-Cheng |
|---|---|
| 論文名稱: |
新型三軸橡膠軸承定位平台之分析、設計與控制 Design, Analysis and Control of a Novel Triaxial Elastomeric Bearing Positioning Stage |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 214 |
| 中文關鍵詞: | 橡膠軸承 、材料測試 、精密定位平台 、快速光學反射鏡 、解耦合控制 |
| 外文關鍵詞: | elastomeric bearings, material mechanical testing, positioning stage, fast steering mirror, decoupling control |
| 相關次數: | 點閱:180 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精密定位在精密機械領域中扮演重要角色,其定位技術的優劣會直接影響到產品製造的品質與檢測的精密程度,其中位移定位平台用於精密儀器中試片位置的微調或是主動減振,角度定位平台常用於在雷射加工系統中的光學反射鏡,透過定位平台改變反射鏡角度決定雷射光束的加工路徑,然而純粹旋轉之定位平台無法補償雷射加工過程中,聚焦透鏡溫昇而改變焦距的問題,因此,需要加入一個平移軸向的定位來補償雷射焦距。而過去研究多以撓性機構設計定位平台,為了因應其非等向剛性的需求形狀往往較為複雜,一旦性能需求更改常就要重新設計撓性結構,為了改善撓性機構的問題,過去有學者引入橡膠軸承進行定位平台的設計,而橡膠軸承的非等向剛性設計來自於橡膠的幾何形狀比例,以簡單的形狀即可設計出與撓性結構相當的非等向剛性,加之橡膠的剪切剛性會隨著壓縮預力而改變,用以設計精密定位平台能夠藉由調整壓縮預力的方式來改變平台的動態特性,但是目前尚未能完整描述橡膠軸承在扭矩與彎矩負荷下的剛性及其剪切剛性隨壓縮預力的變化特性。鑒於此問題,本論文透過模擬與實驗的方式建立一套橡膠軸承設計精密機械之參考,成功預測橡膠受到彎矩與扭矩時的剛性表現,並以此為基礎,設計一個以音圈馬達驅動的新型三軸橡膠軸承定位平台,具備一個平移與兩個旋轉自由度,且以最少致動器驅動定位平台,並設計PID控制器與抑制耦合補償器,在Y軸、θX軸與θZ軸分別達到頻寬80Hz、62Hz與54Hz,定位精度84nm、5.4μrad與1.9μrad。本研究建立一套設計精密機械之橡膠軸承剛性參考,透過準確的剛性分析能夠在機械結構設計階段較精準地預測系統的動態特性,本研究也以此為基礎設計實現一個三軸橡膠軸承精密定位平台,並設計抑制耦合補償器來減少多軸定位平台無可避免的耦合效應的影響。
Positioning stage plays an important role in precision metrology and manufacturing systems. One key application is the fast steering mirrors, which mainly comprised of a rotational positioning stage and they have been widely used in laser manufacturing related applications. In this thesis, a novel 3-DoF translational and rotational positioning stage is designed and realized. It consists of two rotational DoF for guiding the laser path in manufacturing and one translational DoF for compensating the focusing error caused by lens curvature variation due to temperature changes. This stage utilizes elastomeric bearing for providing anisotropic stiffness and has the advantages of size miniaturization and structurally simple design. The stage is driven by three voice coil motors and the resulted displacements are measured by three capacitive displacement sensors. In order to establish the system dynamics, the rubber stiffness is also characterized in different loading manners by both simulation and experiment using a biaxial material testing system and a high strain compression testing system. The characterized hyperelastic behavior is then modelled via Arruda-Boyce model, for subsequent finite element simulation. Based on these stiffness characterization and additional vibrational analyses, a 3-DOF stage dynamics model is developed and is validated using the FE simulations. The models of three positioning axes and coupling effect are established by kinematics and system identification using both including step and swept sine responses. The PID controllers are designed based on loop transmission shaping method and simulated by MATLAB/Simulink. Furthermore, in order to suppress the coupling effect, different compensators are also added in control system. The controllers are implemented in NI cRIO with LabVIEW FPGA program for positioning control experiments. By the step and sinusoidal tracking control experiment, the achieved positioning precision are 84nm, 5.4μrad and 1.9μrad and bandwidths are 80Hz, 62Hz and 54Hz in Y-, θX- and θZ-axis, respectively. The strokes can be up to ±159μm and ±5mrad in translational and rotational axis, respectively. In summary, this research successfully develops a tri-axial positioning stage and realize PID controller with decoupled compensators to eliminate the coupled effect. Compared to two DoF fast steering mirror, the translational DoF in this stage can compensate the focusing error in laser manufacturing. On the other hand, this stage is designed based on elatomeric bearing characterization, and the results of material testing and finite element analysis can be taken as reference for mechanical desing in the future.
[1] Automatic Optimal Inspection Machine, TRT Innovation.
http://www.tri.com.tw/cht/index.aspx
[2] G. C. Loney, High bandwidth steering mirror research. Project Report IRP-15, MIT Lincoln Laboratories, Lexington, MA, January 1992
[3] K.-S. Chen, D.L. Trumper, S.T. Smith, “Design and control for an electromagnetically driven X–Y–θ stage,” Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 355–369
[4] Y. Lu, D. Fan, Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik - International Journal for Light and Electron Optics, Vol. 124, Issue 16, pp. 2443-2449, August 2013
[5] D.J. Kluk, “An Advanced Fast Steering Mirror for Optical Communication,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2007
[6] D. P. Cuff, “ Electromagnetic Nanopositioner”, Master’s thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2006.
[7] https://www.empa.ch/web/coating-competence-center/selective-laser-melting
[8] K.-S. Chen, “A Spring-Dominated Regime Design of a High Load Capacity, Electromagnetically Driven X-Y-θ Stage,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 1995
[9] 王維志, 具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2010.
[10] 李哲維, 堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械工程學系碩士論文, 2012.
[11] 洪榮燦, 橡膠軸承之應力與失效分析, 科技部大專學生研究計畫報告, 2014
[12] 林佩君, 雙軸式材料測試系統之設計與實現及其在橡膠軸承之應用, 國立成功大學機械工程學系碩士論文, 2013
[13] 鄭晏峰, 新式雙軸材料測試系統之實現與橡膠壓縮、剪力、疲勞測試, 國立成功大學機械工程學系碩士論文, 2016
[14] 游逸萱, 結合3D列印與剪力阻尼於撓性定位平台之設計與控制, 國立成功大學機械工程學系碩士論文, 2016
[15] 鄧諺舉, 新型橡膠軸承一維定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2015
[16] L. L. Howell, Compliant Mechanisms. Wiley Publication, 2001
[17] K.B. Choi, J.J. Lee, S. Hata, “A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel,” Sensors and Actuators A 161 (2010) 173–181
[18] 江浩寧, 壓電致動刀具載台之設計分析及其在類銑削加工上之應用, 國立成功大學機械工程學系碩士論文, 2004。
[19] Y.J. Choi, S.V. Sreenivasan, B.J. Choi, “Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism,” Mechanism and Machine Theory, Vol. 43, pp. 724-737, 2008
[20] G. Dai, F. Pohlenz, H.U. Danzebrink, M. Xu, K. Hasche, and G. Wilkening, “Metrological large range scanning probe microscope,” Review of Scientific Instruments, Vol. 75, No. 4, pp. 962-970, April 2004
[21] J.W. Ryu, D.G. Gweon, and K.S.Moon, “Optimal design of a flexure hinge based XYθ wafer stage,” Precision Engineering, vol. 21, no. 1, pp. 18-28, July 1997.
[22] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, August 2003.
[23] A. N. Gent. Engineering with rubber: how to design rubber components. Hanser Publication, Munich, Germany, 2001
[24] Well-Link Industry Co.,Ltd., 橡膠支座,
http://www.bridgebearing.net/tw/rubber-bearings.html
[25] Well-Link Industry Co.,Ltd., 鉛芯橡膠支座,
http://www.bridgebearing.net/tw/lead-rubber-bearings.html
[26] E. I. Rivin, “Properties and prospective applications of ultra thin layered rubber-metal laminates for limited travel bearings”, Tribology International, vol. 16, no. 1, pp. 17-25, Feb. 1983
[27] E. I. Rivin, Stiffness and damping in mechanical design, Marcel Dekker, 1999.
[28] A. E. Barton and D. L. Trumper, “Study of rubber bearings and its applicability in precision machines,” Proc. 2005 ASPE Annual Meeting, Norfolk, VA, October 14, 2005
[29] A. E. Barton-Martinelli, “Rubber bearings for precision positioning systems,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2005
[30] J. Kadlowec, D. Gerrard, and H. Pearlman, “Coupled axial–torsional behavior of cylindrical elastomer bushings,” Polymer Testing, vol. 28, no. 5, pp. 139-144, Apr. 2009
[31] 洪榮燦, 彈性結構破壞之有限元素分析與其應用實例探討, 國立成功大學機械工程學系碩士論文, 2016
[32] 維基百科,Arruda-Boyce model介紹
http://en.wikipedia.org/wiki/Arruda%E2%80%93Boyce_model
[33] O. H. Yeoh, “Some forms of the strain energy function for rubber,” Rubber Chemistry and Technology, vol.66, no. 5, pp. 754-771, Nov. 1993.
[34] E. M. Arruda and M. C. Boyce, “A three-dimensional model for the large stretch behavior of rubber elastic materials,” Journal of Mechanics and Physics of Solids, vol. 41, no. 2, pp. 389-412, Feb. 1993.
[35] R. M. Christensen, Theory of viscoelasticity (an introduction), Academic Press, 1982.
[36] P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11-16, 1979.
[37] P. B. Lindley. Engineering design with natural rubber. The Malaysian Rubber’s Research Association, 1970.
[38] A. R. Payne, “Effect of compression on the shear modulus of rubber,” Rubber Chemistry and Technoloty, vol. 63, no. 3, pp. 675-681, July 1963
[39] https://civil-engg-world.blogspot.tw/2009/08/earthquake-induced-torsion-and-its.html
[40] ASTM D 732-10, “Standard test method for shear strength of plastics by punch tool,” ASTM, 2010.
[41] ASTM D 945-06, “Standard test methods for rubber properties in compression or shear (mechanical oscillograph),” ASTM, 2006.
[42] TestResources lnc., 美國TestResources公司相關橡膠材料測試系統,
http://www.testresources.net/testing/rubber-testing/
[43] Instron Inc., 英斯特朗公司相關橡膠材料測試系統,
http://www.instron.com.tw/wa/solutions/solutions_by_element.aspx?ParentID=136
[44] Abaqus theory manual, Version 6.10, Stimula, 2009
[45] A. C. Ugural, S. K. Fenster, “Advanced mechanics of materials and applied elasticity advanced strength and applied elasticity,” Pearson Education 5ed, 2011