簡易檢索 / 詳目顯示

研究生: 葉柏緯
Yeh, Po-Wei
論文名稱: 伏流水對魚類棲地之影響─以五溝水湧泉濕地為例
Impacts of Hyporheic Water on Fish Habitat: A Case Study of the Wu Gou Shui Spring-fed Wetland Area
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 伏流水垂直水力梯度環境因子多樣性指數魚類棲地
外文關鍵詞: Wu Gou Shui, Hyporheic water, Environmental factor, Fish habitat
相關次數: 點閱:146下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過魚類採樣、環境因子與伏流水的量測,藉以觀察伏流水上湧與下滲之狀況對地表逕流水質的影響,並透過統計分析之方法找出魚類所偏好的棲地。本研究於2012年10月至2014年4月間在屏東縣萬巒鄉五溝水村附近的溪流採樣,其溪流為大武山水脈透過地下流動至五溝村附近湧出,混和地表逕流與伏流水而成;本研究將研究區域區分為興盛橋上游段與五福橋下游段,利用電格法進行魚類採樣,微測壓管量測垂直水力梯度,並量測導電度、溶氧量、pH值與濁度等環境因子,使用獨立樣本T檢定檢定不同水質於伏流水上湧與下滲之差異性,並取魚類資料對照,觀察魚類所喜好的棲地。

    研究結果顯示地表逕流水於不同溪流段中,導電度、水深、濁度與葉綠素a有顯著差異性。而在伏流水上湧與下滲段之地表逕流水中上湧處之溶氧較低、pH較高、底質粒徑較大、硝酸鹽濃度較低且總磷濃度較高,下滲處則反之。魚類採樣結果中,於上湧段的魚類個體數量、魚種數目與生物多樣性指數皆高於下滲段。透過相關分析找出生物參數與環境因子之關係,興盛橋上游段為一大尺度中的上湧區域,該區域水質皆為魚類所偏好之上湧段之水質:水深較深、流速較緩、底質粒徑較粗糙、硝酸鹽濃度較低與總磷濃度較高之區域。五福橋下游段則分布較均勻,可透過上湧與下滲特性了解水質關係與不同種類魚類分布情形。

    本研究透過主成份分析與相關分析研究四種指標魚種:短吻紅斑吻鰕虎、中華鰍、條紋二鬚鲃與馬口魚。顯示短吻紅斑吻鰕虎較喜愛採樣區域中溶氧濃度與葉綠素a較高及水深較淺且水溫、導電度、濁度與硝酸鹽濃度較低之區域。中華鰍則顯示多分布於下滲段內,其水溫、水深深度、導電度較低,濁度、pH值較高且底質粒徑較細之棲地。條紋二鬚鲃偏好水深有一定深度、pH值、總磷濃度與伏流水通量較高,平均流速較緩、水溫、導電度、濁度與硝酸鹽濃度較低之底質顆粒粗糙的區域。馬口魚大量分布在伏流水上湧區域中,喜好上湧段中底質較粗糙,水深、pH值與總磷濃度較高,水溫、流速、導電度與硝酸鹽濃度較低之棲地。

    This study tried to figure out how the upwelling and downwelling of hyporheic water affects surface water. The preferred habitat of fish was identified by using statistical analysis methods. The results could be used as a reference for the restoration work. In addition, data collection of hyporheic water could be basis for extraction of hyporheic water in the future. Sampling sites were in the Wu Gou Shui River. Data was sampled from October 2012 to April 2014. In this study, two sections were sampled upstream of Xing Sheng Bridge and the downstream of Wu Fu Bridge. Then the T-test was used to validate water quality characteristics significant differences between upwelling and downwelling. Pearson Correlation Analysis and Principal Component Analysis (PCA) were used as a comparison to investigate the preferred habitat of different species of fishes. The results show that the water quality of stream water and hyporheic water were different in both upwelling and downwelling locations. Fish density, fish species number, and diversity index were higher in upwelling locations compare to downwelling locations. All the fish indicator species showed different habitat preferences.

    摘要 I Extended Abstract III 謝誌 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究假設 2 1-3 論文研究架構 2 第二章 文獻回顧 4 2-1 伏流水區(hyporheic zone) 4 2-2 伏流水交換的作用機制 9 2-3 伏流水交換區的生態功能 11 2-3-1 緩衝能力 11 2-3-2 生物棲息地的提供 12 2-3-3 食物的供給 13 2-3-4 瀕危物種的保留區與避難所 13 2-4 伏流交換區所受的自然影響因素 14 2-4-1 地形影響 14 2-4-2 水文地質影響 15 2-4-3 氣候影響 15 2-5 人為因素 16 2-6 伏流水區之營養循環與水質差異變化 18 2-6-1 氮循環 18 2-6-2 磷循環 19 2-6-3水質差異變化之研究 21 第三章 資料蒐集與方法 23 3-1 研究區域 23 3-2 採樣時間 26 3-3採樣方法 28 3-3-1 魚類採樣方法 28 3-3-2 環境因子採樣 31 3-3-3 微測壓管量測 33 3-3-4 垂直水力梯度與伏流水通量量測 34 3-4 統計分析方法 37 3-4-1 生物多樣性指數 37 3-4-2 皮爾森相關係數分析 38 3-4-3 雙因子變異數分析(Two-Way ANOVA) 39 3-4-4 樣本T檢定 40 3-4-5 主成份分析 42 第四章 結果與討論 43 4-1 採樣結果 43 4-1-1 伏流水上湧下滲河段調查 43 4-1-2 環境因子統計分析結果 45 4-1-3 伏流水上湧下滲段對水質影響統計分析結果 49 4-1-4 伏流水與地表逕流中的營養鹽 52 4-2魚類採樣結果 55 4-3 魚類棲地偏好 58 4-3-1 生物多樣性指數 58 4-3-2 魚類棲地與伏流水上湧、下滲的關係 60 4-4 指標魚種 63 4-4-1 短吻紅斑吻鰕虎 66 4-4-2 中華鰍 68 4-4-3 條紋二鬚鲃 70 4-4-4 馬口魚 72 第五章 結論與建議 75 5-1 結論 75 5-2 建議與展望 76 參考文獻 77 附錄A 86 附錄A-1 溪流分段與伏流水狀態間效應項的檢定 86 附錄B 88 附錄B-1 溪流分段之獨立樣本T檢定 88 附錄B-2 伏流水狀態之獨立樣本T檢定 90 附錄C 92 附錄C-1 短吻紅斑吻鰕虎之主成份兩軸檢定 92 附錄C-2 中華鰍之主成份分析兩軸檢定 93 附錄C-3 條紋二鬚鲃之主成份分析兩軸檢定 94 附錄C-4 馬口魚之主成份分析兩軸檢定 95 附錄D 96 附錄D-1 河溪棲息地與魚種數目調查單 96

    Alley, W. M., Healy, R. W., LaBaugh, J. W. and Reilly, T. E., “Flow and storage in groundwater systems,” science, 296(5575), 1985-1990(2002)
    Bain, M. B., Finn, J. T., and Booke, H. E., “A quantitative method for sampling riverine microhabitats by electrofishing,” North American Journal of Fisheries Management, 5(3B), 489-493(1985)
    Battin, T. J., Kaplan, L. A., Newbold, J. D., and Hendricks, S. P., “A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function,” Freshwater Biology, 48(6), 995-1014(2003)
    Barwell, V. K., and Lee, D. R.., ”Determination of horizontal‐to‐vertical hydraulic conductivity ratios from seepage measurements on lake beds,” Water Resources Research, 17(3), 565-570(1981)
    Baxter, C. V., and Hauer, F. R., “GeomorpHology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus),” Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481 (2000)
    Baxter, C., Hauer, F. R., and Woessner, W. W., “Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity,” Transactions of the American Fisheries Society, 132(3), 493-502(2003)
    Bencala, K. E., “Hyporheic zone hydrological processes, ”Hydrological Processes, 14(15), 2797-2798(2000)
    Berryman, A. A., and Hawkins, B. A., “The refuge as an integrating concept in ecology and evolution,” Oikos, 115(1), 192-196(2006)
    Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H. M., “The functional significance of the hyporheic zone in streams and rivers,” Annual Review of Ecology and Systematics, 29(1), 59-81(1998)
    Boulton, A. J., Marmonier, P., and Davis, J. A., “Hydrological exchange and subsurface water chemistry in streams varying in salinity in south-western Australia,” International Journal of Salt Lake Research, 8(4), 361-382(1999)
    Boulton, A. J., “River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia,” Ecosystem Health, 6(2), 108-118(2000)
    Boven, K. D., and Milhous, R., ”Hydraulic simulation in instream flow studies: theory and techniques,” United States. Fish and Wildlife Service. Office of Biological Services. FWS/OBS (USA). no. 78/33(1978)
    Brunke, M. and Gonser T., "The ecological significance of exchange processes between rivers and groundwater," Freshwater Biology 37(1): 1-33(1997)
    Chang, C. H., Shao, Y. T., and Kao, H. W., ”Molecular identification of two sibling species of Puntius in Taiwan,” Zoological Studies, 45(2), 149 (2006)
    Claret, C., Marmonier, P., and Bravard, J. P., “Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river,” Aquatic Sciences, 60(1), 33-55(1998)
    Darcy, H., ” Les Fontaines Publiques de la Ville de Dijon,” Dalmont, Paris(1856)
    Dole-Olivier, M., “The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects,” Marine and Freshwater Research 62, 1281–1302(2011)
    Edwards, R. T., “The hyporheic zone,” River Ecology and Management. Springer, 399-429 (1998)
    Feral, D., Camann, M. A., and Welsh Jr, H. H., “Dicamptodon tenebrosus larvae within hyporheic zones of intermittent streams in California,” Herpetological Review, 36(1), 26-26.
    Findlay, S., "Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone," Limnology and oceanograpHy 40(1): 159-164(1995)
    Fischer, H., Kloep, F., Wilzcek, S., and Pusch, M. T., “A river's liver–microbial processes within the hyporheic zone of a large lowland river,” Biogeochemistry, 76(2), 349-371(2005)
    Fernald, A. G., Landers, D. H., and Wigington, P. J., “Water quality changes in hyporheic flow paths between a large gravel bed river and off‐channel alcoves in Oregon, USA,” River Research and Applications, 22(10), 1111-1124(2006)
    Findlay, S., and Sobczak, W. V., “Variability in removal of dissolved organic carbon in hyporheic sediments,” Journal of the North American Benthological Society, 15(1), 35-41 (1996)
    Franken, R. J., Storey, R. G., and Williams, D. D., “Biological, chemical and pHysical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream,” Hydrobiologia, 444(1-3), 183-195 (2001)
    Gibert, J., Danielopol, D., and Stanford, J. A., (Eds.). Groundwater ecology(Vol. 1). Academic Press (1994).
    Gibert, J., Mathieu, J., and Fournier, F. (Eds.), Groundwater/surface water ecotones: biological and hydrological interactions and management options. Cambridge: Cambridge University Press(1997)
    Gorman, O. T., and Karr, J. R., ”Habitat structure and stream fish communities,” Ecology, 59(3), 507-515 (1978)
    Hancock, P. J., “Human impacts on the stream–groundwater exchange zone,” Environmental Management, 29(6), 763-781(2002)
    Hancock, P. J., Boulton, A. J., and HumpHreys, W. F., “Aquifers and hyporheic zones: towards an ecological understanding of groundwater.Hydrogeology Journal, 13(1), 98-111(2005)
    Harvey, J. W., and Fuller, C. C., “Effect of enhanced manganese oxidation in the hyporheic zone on basin‐scale geochemical mass balance,” Water Resources Research, 34(4), 623-636(1998)
    Hendricks, J. J., Nadelhoffer, K. J., and Aber, J. D., ”Assessing the role of fine roots in carbon and nutrient cycling,” Trends in Ecology and Evolution, 8(5), 174-178(1993)
    Hodgson, G. R., “AmpHibians as metrics of critical biological thresholds in forested headwater streams of the Pacific Northwest, USA. Freshwater biology, “ 53(7), 1470-1488. (2008)
    Hotelling, H.,. “Analysis of a complex of statistical variables into principal components,” Journal of educational psychology, 24(6), 417 (1933)
    Jones Jr, J. B., Fisher, S. G., and Grimm, N. B.,. “Nitrification in the hyporheic zone of a desert stream ecosystem,” Journal of the North American Benthological Society, 249-258(1995)
    Kawanishi, R., Inoue, M., Dohi, R., Fujii, A., and Miyake, Y., “The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard,” Aquatic sciences, 75(3), 425-431(2013)
    Lake, P. S.. “Disturbance, patchiness, and diversity in streams,” Journal of the north american Benthological society, 573-592(2000)
    Larkin, R. G. and J. M. Sharp., “On the relationship between river-basin geomorpHology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers,” Geological Society of America Bulletin 104(12): 1608-1620(1992)
    Maazouzi, C., Claret, C., Dole-Olivier, M. J., and Marmonier, P., “Nutrient dynamics in river bed sediments: effects of hydrological disturbances using experimental flow manipulations,” Journal of Soils and Sediments, 13(1), 207-219(2013)
    Malard, F., Tockner, K., Dole‐Olivier, M. J., Mathieu, J. and Stoch, F.,” Sampling Method for the Assessment of Regional Groundwater Biodiversity Fifth Framework Programme Key Action,” GlobalChange, Climate and Biodiversity Assessment and conserving biodiversity Constract, 2:1-21(2001)
    Malard, F., Tockner, K., Dole‐Olivier, M. J., and Ward, J. V., “A landscape perspective of surface–subsurface hydrological exchanges in river corridors,” Freshwater Biology, 47(4), 621-640 (2002)
    Malcolm, I. A., Soulsby, C., Youngson, A. F., Hannah, D. M., McLaren, I. S., and Thorne, A., “Hydrological influences on hyporheic water quality: implications for salmon egg survival,” Hydrological Processes, 18(9), 1543-1560(2004)
    Marmonier, P., Fontvieille, D., Gibert, J., and Vanek, V.. “Distribution of dissolved organic carbon and bacteria at the interface between the Rhône River and its alluvial aquifer,” Journal of the North American Benthological Society, 382-392(1995)
    Meyer, E. I., Niepagenkemper, O., Molls, F., and Spänhoff, B., “An experimental assessment of the effectiveness of gravel cleaning operations in improving hyporheic water quality in potential salmonid spawning areas,” River research and applications, 24(2), 119-131(2008)
    Mouw, J. E., Stanford, J. A., and Alaback, P. B., ”Influences of flooding and hyporheic exchange on floodplain plant richness and productivity,” River research and applications, 25(8), 929-945(2009)
    Naiman, R. J. (Ed.)., The freshwater imperative: a research agenda. Island Press(1995)
    Olsen, D. A., and Townsend, C. R., “Hyporheic community composition in a gravel‐bed stream: influence of vertical hydrological exchange, sediment structure and pHysicochemistry. Freshwater Biology, 48(8), 1363-1378(2003)
    Orghidan, T., “Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop,” Arch. Hydrobiol 55(5): 392-414(1959)
    Palmer, M. A., Bely, A. E., and Berg, K. E., ”Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis,” Oecologia, 89(2), 182-194(1992)
    Pearson, K., “On lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin PHilosopHical Magazine and Journal of Science, 2(11), 559-572(1901)
    Pearson, K., “Principal components analysis,” The London, Edinburgh, and Dublin PHilosopHical Magazine and Journal of Science, 6(2), 559 (1901)
    Pfannkuch, H. O., and Winter, T. C., “Effect of anisotropy and groundwater system geometry on seepage through lakebeds: 1. Analog and dimensional analysis,” Journal of Hydrology, 75(1), 213-237(1984)
    Platts, W. S., Megahan, W. F., and Minshall, G. W., “Methods for evaluating stream, riparian, and biotic conditions,” General Technical Report(1983)
    Poff, N. L., and Ward, J. V., “Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns,” Canadian journal of fisheries and aquatic sciences, 46(10), 1805-1818(1989)
    Ryan, B. J., and Kipp, K. L., “Ground-water flow and contaminant transport at a radioactive-materials processing site,” Wood River Junction, Rhode Island(No. 1571). USGPO(1997)
    Schwartz, J. S. and E. E. Herricks., “Use of Prepositioned Areal Electrofishing Devices with Rod Electrodes in Small Streams,” North American Journal of Fisheries Management 24(4): 1330-1340(2004)
    Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., and Hawkins, C. P., “Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems,” Environmental Management, 14(5), 711-724(1990)
    Shannon, C. E., “A mathematical theory of communication,” The Bell System Technical Journal, 27, 379–423 and 623–656(1948)
    Simpson, E. H. “Measurement of diversity,” Nature, 163, 688.(1949)
    Smock, L. A., Gladden, J. E., Riekenberg, J. L., Smith, L. C., and Black, C. R., “Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments,” Ecology, 876-886(1992)
    Soulsby, C., Malcolm, I. A., Tetzlaff, D., and Youngson, A. F., “Seasonal and inter‐annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream,” River research and applications,25(10), 1304-1319(2009)
    Statzner, B., Gore, J. A., and Resh, V. H., “Hydraulic stream ecology: observed patterns and potential applications,” Journal of the North American Benthological Society, 7(4), 307-360(1988)
    Stein, H., Kellermann, C., Schmidt, S. I., Brielmann, H., Steube, C., Berkhoff, S. E. and Griebler, C., “The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality,” Journal of Environmental Monitoring, 12(1), 242-254(2010)
    Stubbington, R. (2012). The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research, 63(4), 293-311.
    Toth, J., “A theoretical analysis of groundwater flow in small drainage basins,” Journal of GeopHysical Research, 68(16), 4795-4812(1963)
    Triska, F. J., Duff, J. H., and Avanzino, R. J., “Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel‐bottom stream: examining terrestrial—aquatic linkages,” Freshwater Biology, 29(2), 259-274(1993)
    Triska, F. J., Duff, J. H., and Avanzino, R. J., “The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial—aquatic interface,” In Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers (pp. 167-184). Springer Netherlands. (1993)
    Valett, H. M., Fisher, S. G., and Stanley, E. H., “PHysical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream,” Journal of the North American Benthological Society, 201-215(1990)
    Valett, H. M., Hakenkamp, C. C., and Boulton, A. J., “Perspectives on the hyporheic zone: integrating hydrology and biology: Introduction,” Journal of the North American Benthological Society, 40-43(1993)
    Vervier, P., Gibert J., Marmonier P. and Dole-Olivier M., “A Perspective on the Permeability of the Surface Freshwater-Groundwater Ecotone,” Journal of the North American Benthological Society, Vol. 11, No. 1, pp. 93-102(1992)
    Vervier, P., Bonvallet‐Garay, S., Sauvage, S., Valett, H. M., and Sanchez‐Perez, J. M., “Influence of the hyporheic zone on the pHospHorus dynamics of a large gravel‐bed river, Garonne River, France,” Hydrological processes, 23(12), 1801-1812(2009)
    Ward, J. V., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T., and Hildrew, A. G., “The boundaries of river systems: the metazoan perspective,” Freshwater Biology, 40(3), 531-569(1998)
    Wyatt, K. H., Hauer, F. R., and Pessoney, G. F., “Benthic algal response to hyporheic-surface water exchange in an alluvial river,” Hydrobiologia, 607(1), 151-161 (2008)
    White, D. S., “Perspectives on defining and delineating hyporheic zones,” Journal of the North American Benthological Society, 61-69(1993)
    Williams, D. D., and Hynes, H. B. N., ”The occurrence of benthos deep in the substratum of a stream,” Freshwater biology, 4(3), 233-256(1974)
    Wondezell, S. M. and Swanson, F. J., “Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream Nutrient cycling,” Journal of the North American Benthological Society, 15: 20-34(1996)
    Wu, F.C., “Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions,” Water Resources Research 36(6): 1595-1603(2000)
    Xu, M. Z., Wang, Z. Y., Pan, B. Z. and Zhao, N., “Distribution and species composition of macroinvertebrates in the hyporheic zone of bed sediment,” International Journal of Sediment Research 27(2): 129-140(2012)
    林馳源,「伏流水對地表逕流水質與魚類影響之研究」 國立成功大學水利及海洋工程學系學位論文(2013)
    林震岩,「多變量分析 SPSS 的操作與應用」,智勝文化事業有限公司(2007)
    呂映昇,「物理環境因子與魚類棲地喜好度之關係-多變量分析之應用」 國立成功大學水利及海洋工程學系學位論文,1-181(2009)
    邵廣昭,台灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2014-5-25)
    胡俊鋒、王金生與滕彥國,「地下水與河水相互作用的研究進展」 水文地質工程地質, 31(1),108-113(2004)
    袁興中與羅固源.,「溪流生態系統潛流帶生態學研究概述」 生態學報 23(5): 956-964(2003)
    陳順宇與鄭碧娥,「統計學」,華泰書局(2004)
    陳順宇,「多變量分析」,華泰書局, 四版(2005)
    蔡承恩,「屏東平原自升水系-分布區域調查與出水量潛能分析」,國立屏東科技大學土木工程系碩士班碩士論文(2004)
    滕彥國、左銳與王金生,「地表水-地下水的交錯帶及其生態功能. 」地球與環境, 35(1), 1-8.(2007)

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE