簡易檢索 / 詳目顯示

研究生: 胡瑞明
Hu, Jui-Ming
論文名稱: 在服務成本和預算限制下具有選擇性零組件和付款選擇的產品存貨控制系統之研究
Inventory control systems for products with optional components and payment options under service level and budget constraints
指導教授: 王泰裕
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 83
中文關鍵詞: 存貨/生產(Q, r)模式服務水準非線性最佳化模組化延遲性
外文關鍵詞: inventory/production, modularization, postponement, (Q, r) model, service level, myopic policy, nonlinear optimization
相關次數: 點閱:196下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,企業界正面臨著全球化、客製化、快速回應和快速的科技變遷等重要環境因素的挑戰。企業必須增加提供藉由品質、功能等等差異化的不同產品來滿足消費者善變的喜好和不同支付費用的意願。且企業界不能僅只考慮產品與流程設計,還要專注在如何支援前述的服務目標、減少預測的誤差和平衡預算。而模組化、延遲和資訊分享三者是有關於產品與流程再設計的關鍵議題,也是企業界為了適應環境挑戰的趨勢而廣為採用的方法。因此,對企業界來說,管理多項目存貨系統漸漸地變成是其重要的策略之ㄧ。許多的研究探討了項目間具有獨立需求之多項目存貨系統。然而,存在項目間的交互作用略在具有獨立需求之多項目存貨系統中被忽略掉了。此外,有些學者在他們所規劃的存貨模型中,引進一些不同的成本構面,更實用地被用來修飾變動成本。以此方式,我們將引進服務成本,它被定義成與服務水準成比例。在本論文中,針對具有相互需求之多項目存貨控制系統,發展(Q, r)模型(連續盤點)來尋求最佳化的決策變數(批量與再訂購點)。我們的目標是,在考量最小化期望總成本和由環境因素的挑戰所引起一些限制條件下,去尋求最佳化的存貨管理策略。當服務水準為非凸函數時,本篇所規劃的模式將形成一個非線性最佳化的問題。所以,針對我們所規畫的模組,修改一些知名求解非線性最佳化問題的方法與程序,用來發展啟發式求解的方法與程序,並將與其他知名的方法或程序之所得結果做個比較。

    Globalization, customization, quick response and rapid technology changes are important environmental challenges facing enterprises in recent years. Firms increasingly must offer differentiated products that are differentiated in terms of quality, function, and so on to target fickle customer preferences as well as different levels of willingness to pay. Enterprises should not only consider product and process design, but also to emphasize how to support these mentioned service objects, reduce the forecast errors and balance their budget. Modularization, postponement and information sharing are the key issues related to product and process redesign that are required in adapting enterprises to the tendency of environmental challenges. Hence, managing the multi-item inventory system is becoming one of the important policies for enterprises. Literatures have explored the multi-item inventory system with independent demand among different items. However, there are interaction effects that should not be overlooked in the multi-item inventory system with independent demand. Moreover, some scholars have introduced different aspects of cost into their models for modifying the variable cost pragmatically. Thus, the service cost is introduced and defined in proportion to the service level. In this thesis, the (Q, r) model (continuous review) is developed to find the optimal decision variables (the lot size and reorder point) for a multi-item inventory control system with interactions between necessary and optional components. Our objective is to find the optimal inventory management policies under the consideration of minimizing the expected total costs and some constraints caused by the environmental challenges. These models are formulated as nonlinear optimization problems as the service level is nonlinear. Some known procedures are revised to solve some of these problems and the results are compared with other known procedures.

    Abstract...... i Acknowledgements………… iv Table of Contents………… v List of Tables……………… vii List of Figures………………viii 1.Introduction………1 1.1Research motivation…………1 1.2Research objectives………4 1.3Research scope……………5 1.4Research procedure……………6 1.5The organization of the dissertation…………8 2.Literature review……………………….……… 9 2.1Multi-item inventory control system.…………9 2.2Modularization, postponement, and information sharing…10 2.3The influential costs…………………13 2.4The heuristic algorithm………………13 2.5Summary…………………………………14 3.Research framework and methodology……………15 3.1The research framework…………………………15 3.2Definition of the service cost………………16 3.3The multi-item inventory system with dependent demand under continuous review…………………17 3.4Stochastic payment……………………19 3.5Heuristic procedure……………………19 3.6Summary …………………………………20 4.The (Q,r) model with payment is due at the time an order is placed………21 4.1Model formulation……………………………… 23 4.2The theoretical development.............. 25 4.2.1The service level of the necessary component is not given............ 27 4.2.2The service level of the necessary component is given……33 4.3The numerical example………………………39 4.3.1The ervice level of the necessary component is not given……40 4.3.2The ervice level of the necessary component is given………42 4.4Summary......................... 44 5.The (Q,r) model with stochastic payment………46 5.1Model formulation………………………47 5.2The theoretical development................49 5.2.1An indeterminate service level of the necessary component……51 5..2.2A determinate service level of the necessary component……58 5.3The numerical example……………………62 5.3.1An indeterminate service level of the necessary component……63 5.3.2A determinate service level of the necessary component…64 5.4Summary…………………………67 6.Conclusions and suggestions…………69 6.1Conclusions ……………………………70 6.2Suggestions……………………………71 Bibliography………………………………73 Appendix……………………………………78

    Agrawal, N. and Cohen, M. Optomalmaterial control in an assembly system with component commonality. Naval Research Logistics 2001; 48; 409-429.
    Anand, K. S. and Girotra, K. The strategic perils of delayed differentiation. Management Science 2007; 53(5); 697-712.
    Aviv, Y. and Federgruen, A. Design for postponement: a comprehensive characterization of its benefits under unknown demand distributions. Operations Research 2001a; 49(4); 578-598.
    Aviv, Y. and Federgruen, A. Capacited multi-item inventory systems with random and seasonally fluctuating demands: implications for postponement strategies. Management Science 2001b; 47(4); 512-531.
    Baker, K. R., Magazine, M. J. and Nuttle, W. HL. The effect of commonality on safety stock in a simple inventory model. Management Science 1986; 32(8); 982-988.
    Balakrishnan, A., Pangburn, M. S. and Stavrulaki, E. “Stack Them High, Let ‘em Fly”: Lot-sizing policies When Inventories Stimulate Demand. Management Science 2004; 50; 630-644.
    Bhattacharya, D. K. On multi-item inventory. European Journal of Operational Research 2005; 162; 786-791.
    Bradley, G. L. and Smith, K. J. Calculus. N J: Prentice-Hall; 1999.
    Brown, R. G. Decision rules for inventory management, Holt, Rinehart and Winston: New York; 1967.
    Cachon, G. P. and Fisher, M. Supply chain inventory management and the value of shared information. Management Science 2000; 46; 1032-1050.
    Chang, CT. Inventory models with stock-dependent demand and nonlinear holding costs for deteriorating items. Asia-Pacific Journal of Operational Research 2004; 21(4); 435-446.
    Chang C.-T and Lo T.-Y. On the Cycle Demand Inventory Models with Resource Constraints. Taiwan Academy of Management Journal 2003; 3(2); 29-39.
    Chen J.-S and Chen R.-I. The Effects of Information Sharing on Supply Chain Performance: Journal of business Administration 2003; 56; 111-146.
    Chen, Y. F. Fractional programming approach to two stochastic inventory problems. European Journal of Operational Research 2005; 160; 63-71.
    Chen Y.-M and Lee W.-W Lead Time Managed in a Multi-Echelon Supply Chain with Information sharing: Analytical Approach and Performance Evaluation. Journal of E-Business 2006; 8(2); 235-270.
    Collier, D. A. Aggregate safety stock levels and component part commonality. Management Science 1982; 28; 1296-1303.
    Dogramaci, A. Design of common components considering implications of inventory costs and forecasting. IIE Transactions 1979; 11; 129-135.
    Ernst, R. and Kamrad, B. Evaluation of supply chain structures through modularization and postponement. European Journal of Operational Research 2000; 124; 495-510.
    Eynan, A. and Rosenblatt, M. J. Component commonality effects on inventory costs. IIE Transactions 1996; 28; 93-104.
    Garg, A. and Tang, C. S. On postponement strategies for product families with multiple points of differentiation. IIE Transactions 1997; 29; 641-650.
    Gerchak, Y., Magazine, M. J. and Gamble, A. B. Component commonality with service level requirement. Management Science 1988; 34(6); 753-760.
    Ghalebsaz-Jeddi, B., Shultes, B. C. and Haji, R. A multi-production continuous review inventory system with stochastic demand, backorders, and a budget constraint. European Journal of Operational Research 2004; 158; 456-469.
    Hadley, G. and Whitin, T. M. Analysis of inventory systems. Prentice-Hall: Englewood cliffs, New Jersey; 1963.
    Hausman, W. H. and Lee, H. L. Zhang A X. Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies. European Journal of Operational Research 1998; 109; 646-659.
    Hillier, F. S. and Lieberman, G. J. Introduction to operations research. McGraw-Hill: New York; 2001 7th ed. P. 958.
    Hillier, M. S. Component commonality in multiple-period, assemble-to- order systems. IIE Transactions 2000; 32; 755-766
    Huang, B. and Iravani, Seyed. M. R. Production control policies in supply chains with selective-information sharing. Operations Research 2005; 53(4); 662-674.
    Hung K.-C, Chowhuang W.-T, Yang G. K., and Julian P. C. An Efficient Newton-Raphson Procedure for Determining the Optimal Inventory Replenishment Policy. Journal of the Chinese Institute of Industrial Engineers 2008; 25(3); 237-246.
    Iyer, A. V., Deshpande, V. and Wu, Z. A postponement model for demand management. Management Science 2003 ; 49(8); 983-1002.
    Johnson, L. A. and Montgomery, D. C. Operations research in production planning, scheduling, and inventory control. John Wiley & Sons: New York; 1974.
    Lan C.-H, Chiu C.-W, and Hu H.-C. A Macro-Hybrid Supply Chain Model for Multu-Interval Planning. Journal of Science and Engineering Technology 2007; 3(4); 87-98.
    Lee, H. L. Effective inventory and service management through product and process redesign. Operations Research 1996; 44(1); 151-159.
    Lee, H. L. and Tang, C. Modeling the costs and benefits of delayed product differentiation. Management Science 1997; 43(1); 40-53.
    Parker, L. L. Economical reorder quantities and reorder points with uncertain demand. Naval Research Logistics Quarterly 1964; 11(4); 351-358.
    Rosling, K. Applicable cost rate functions for single-item inventory control. Operations Research 2002; 50; 1007-1017.
    Su I. S.-I, Liu C.-T, and Chen H.-T. Applying Postponement Strategy in an Upstream Production Supply Chain Analysis for TFT LCD Industry. Journal of management 2006; 23(5); 523-536.
    Swaminathan, J. M. and Tayur, S. R. Managing broader product lines through delayed differentiation using vanilla boxes. Management Science 1998; 44(12); s161-s172.
    Swaminathan, J. M. and Tayur, S. R. Managing design of assembly sequences for product lines that delay product differentiation. IIE Transactions 1999; 31; 1015-1027.
    Thomas, I. D. Commonality analysis using clustering methods. Operations Research 1991; 39; 677-680.
    Thonemann, U. W. and Brandeau, M. L. Optimal commonality in component design. Operations Research 2000; 48; 1-19 OR Practice.
    Tibben-Lembke, R.S. and Bassok, Y. An inventory model for delayed customization: A hybrid approach. European Journal of Operational Research 2005; 165; 748-764.
    Tinarelli, G. U. Inventory control: models and problems”, European Journal of Operational Research 1983; 14; 1-12.
    Wang, T.-C, Lee, S.-H, and Wang, H.-W. Innovetion, Misappropriation and Supply Chain Performance. Taiwan Academy of management journal 2005; 5(1); 57-74.
    Wang, T.-Y. and Hu, J.-M. An inventory control system for products with optional componenets under service level and budget constraint, European Journal of Operational Research 2008; 189; 41-58.
    Wu S.-Y. An analysis on Decisions of Production Postponement Planning through the viewpoint of Total Cost. Journal of management & system 2007; 14(3); 317-339.
    Yano, C. A. New algorithms for (Q, r) system with complete backordering using a fill-rate criterion. Naval Research Logistics Quarterly 1985; 32; 675-688.
    Yates, R. D. and Goodman, D. J. Probability and stochastic processes. John Wiley &
    Sons: New York; 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE