簡易檢索 / 詳目顯示

研究生: 吳冠輝
Wu, Guan-Huei
論文名稱: 探究量子優越性以及在量子神經網絡下的糾纏轉移
Investigate Quantum Advantage and Entanglement Transfer Through Quantum Neural Network
指導教授: 周忠憲
Chou, Chung-Hsien
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 86
中文關鍵詞: 量子計算機器學習量子糾纏量子體積量子優越性
外文關鍵詞: Quantum computing, Machine learning, Quantum entanglement, Quantum volume, Quantum advantage
相關次數: 點閱:92下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子計算與機器學習是現今科技發展備受矚目的兩大領域,我們在基於傳統機器學
    習的神經網絡架構之下,將其轉換成量子電路的型式,並且利用 IBM的量子電腦來
    呈現。本篇論文主要分為三個主題:
    1. 對神經網絡做重整化的處理,以此使用較少的神經元來表達相同的資訊量,藉此
    將量子糾纏的特性引入到神經網絡的架構當中。 討論糾纏性質能夠在神經網絡架構
    當中被轉移的現象,分析不同路徑以及不同量子體積之間對於轉移成功率的影響。
    2. 我設計了三種實驗方式來討論基於不同量子體積之下,改變量子位元數量、計算
    深度,對於量子電腦效能以及計算準確率的影響。
    3. 為了尋找量子電腦較傳統電腦的優勢,我設計了一個類迷宮的搜尋演算法,利用
    量子力學中波的疊加性以及糾纏的特性來詮釋資訊傳遞與共享的過程。

    Both quantum computing and machine learning are high-profile in current technology development. We transpose the neural network model into the quantum mode with a quantum circuit and run the algorithms on IBM quantum computers. There are three main topics in my thesis: First, we try to use fewer neurons to express the same information contained in the original model by applying the renormalization method to the neural network. Therefore, we introduce the quantum entanglement to our new model. We consider that the entangled property can be transferred through a neural network model in a quantum circuit, and show how the fidelity will be affected by different paths and different quantum volumes. Second, we design three different ways to analyze the performance and fidelity of quantum computers under different quantum volumes by changing the number of qubits and depth of the circuit. Finally, to find the quantum advantage compared to classical computers, we make a maze-like search algorithm based on superposition and entanglement to demonstrate the process of information sharing.

    Abstract i Acknowledgment iii List of Tables v List of Figures vi Nomenclature x 1 Introduction to Quantum Neural Network 1 1.1 Qubit and Bloch Sphere 1 1.1.1 Projective measurement on a qubit 4 1.2 Quantum circuit and Quantum gate 5 1.2.1 Frequently used quantum gates 5 1.2.2 Rotation operators 6 1.2.3 Control gate 6 1.2.4 Create an entangled state with quantum circuit 8 1.2.5 SWAP gate 9 1.3 Neural Network 12 1.3.1 Preactivation 12 1.4 Restricted Boltzmann Machine, RBM 14 1.4.1 Hamiltonian and trial state of RBM 15 1.4.2 Distribution Function of RBM 15 1.5 Renormalization Group 16 1.5.1 RG flow 16 1.5.2 Partition function after renormalizing 17 1.6 Quantum Ising model 18 1.7 Summary 19 2 Entanglement transfer through RBM 20 2.1 Entanglement Transfer with 27 Qubits System 20 2.1.1 27 Qubits System 21 2.1.2 Group the whole layer as an entangled state 22 2.1.3 Group every 3 or 4 qubits as an entangled state with 27Q system 25 2.2 Entanglement Transfer with 65 Qubits System 28 2.2.1 Group every 3 or 4 qubits as an entangled state with 65Q system 29 2.3 Bit-flip error 30 2.3.1 Visualize Bloch Sphere 30 2.3.2 Gate errors exist continuously 31 2.3.3 Bloch Sphere will shrink 32 2.3.4 X-measurement 33 2.4 Summary 35 3 Quantum Volume 36 3.1 Test SWAP Gates 37 3.2 SWAP Sequence 40 3.3 Test Depth 44 3.4 Add arbitrary quantum gates on six qubits 47 3.5 Test CNOT gate by changing the number of qubits 48 3.6 Summary 50 4 Quantum Advantage 51 4.1 Quantum Maze Problem 51 4.2 Brief introduction to Quantum Walk 53 4.3 Solve maze problem with IBM Quantum System 55 4.3.1 Maze-like search algorithm with 27Q IBM Quantum System 55 4.4 Put U gates in the maze 56 4.5 Revise the maze-like search structure 59 4.6 Scale down the structure 60 4.7 Maze-like search algorithm with 65Q IBM Quantum System 62 4.8 Follow the rule of Quantum Walk 63 4.9 Summary 64 5 Summary and Outlook 66 Bibliography 70 A Figures of Quantum Circuits 73 B Fidelity of Different Paths 81 B.1 SWAP Test from Different Starting Point 81 B.2 Compare with two paths: Small Loop and Long Chain 85

    [1] D. Baeriswyl, L. Degiorgi, Strong interactions in low dimensions, Springer Science and Business Media, vol. 25, (2007)
    [2] J. Biamonte et al., Quantum machine learning. Nature 549, 195-202 (2017).
    [3] T. Brun, I. Devetak, M.-H. Hsieh, Correcting quantum errors with entanglement. Science 314, 436-439 (2006).
    [4] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602-606 (2017).
    [5] S. Das, M. Rahman, M. Majumdar, Design of a quantum repeater using quantum circuits and benchmarking its performance on an IBM quantum computer. Quantum Information Processing 20, 1-17 (2021).
    [6] D.-L. Deng, Machine learning detection of bell nonlocality in quantum many-body systems. Physical Review Letters 120, 240402 (2018).
    [7] D.-L. Deng, X. Li, S. D. Sarma, Machine learning topological states. Physical Review B 96, 195145 (2017).
    [8] D.-L. Deng, X. Li, S. D. Sarma, Quantum entanglement in neural network states. Physical Review X 7, 021021 (2017).
    [9] Y. Du, M.-H. Hsieh, T. Liu, D. Tao, Expressive power of parametrized quantum circuits. Physical Review Research 2, 033125 (2020).
    [10] S. Foulds, V. Kendon, T. Spiller, The controlled SWAP test for determining quantum entanglement. Quantum Science and Technology 6, 035002 (2021).
    [11] T. Giordani et al., Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit–qudit dynamics. New Journal of Physics 23, 023012 70 (2021).
    [12] J. Haferkamp, P. Faist, N. B. Kothakonda, J. Eisert, N. Yunger Halpern, Linear growth of quantum circuit complexity. Nature Physics, 1-5 (2022).
    [13] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Reviews of modern physics 81, 865 (2009).
    [14] T. H. Hsieh, From d-dimensional Quantum to d+ 1-dimensional Classical Systems. Student review,(2) 1, (2016).
    [15] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, E. M. Stoudenmire, Towards quantum machine learning with tensor networks. Quantum Science and Technology 4, 024001 (2019).
    [16] Z. Ji, A. U. Rahman, P. Fan, H. Zhang, Entanglement swapping for multi-particle pure states and maximally entangled states. arXiv preprint arXiv:2009.02555, (2020).
    [17] P. Li, B. Wang, Quantum neural networks model based on swap test and phase estimation. Neural Networks 130, 152-164 (2020).
    [18] S. Lu et al., Separability-entanglement classifier via machine learning. Physical Review A 98, 012315 (2018).
    [19] H. J. Maris, L. P. Kadanoff, Teaching the renormalization group. American journal of physics 46, 652-657 (1978).
    [20] R. Medina, R. Vasseur, M. Serbyn, Entanglement transitions from restricted Boltzmann machines. Physical Review B 104, 104205 (2021).
    [21] K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii, Quantum circuit learning. Physical Review A 98, 032309 (2018).
    [22] N. Moll et al., Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology 3, 030503 (2018).
    [23] A. Nayak, A. Vishwanath, Quantum walk on the line. arXiv preprint quantph/ 0010117, (2000).
    [24] Nielsen, Michael A.; Chuang, Isaac, Quantum computation and quantum information, (2002).
    [25] M. Ostaszewski, E. Grant, M. Benedetti, Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021).
    [26] Dalla Pozza, Nicola, et al. Quantum reinforcement learning: the maze problem. Quantum Machine Intelligence 4.1 (2022).
    [27] J. Preskill, Lecture notes for physics 229: Quantum information and computation. California Institute of Technology 16, 1-8 (1998).
    [28] D. A. Roberts, S. Yaida, B. Hanin, The principles of deep learning theory. arXiv preprint arXiv:2106.10165, (2021).
    [29] Sch¨utt, Kristof T., et al., Machine learning meets quantum physics. Lecture Notes in Physics (2020).
    [30] M. Schuld, N. Killoran, Quantum machine learning in feature Hilbert spaces. Physical review letters 122, 040504 (2019).
    [31] I. B. Slimen, A. Gueddana, V. Lakshminarayanan, Generalization of CNOT-based Discrete Circular Quantum Walk: Simulation and Effect of Gate Errors. arXiv preprint arXiv:2005.02447, (2020).
    [32] B. C. Travaglione, G. J. Milburn, Implementing the quantum random walk. Physical Review A 65, 032310 (2002).
    [33] Y. Wu, C. Wei, S. Qin, Q. Wen, F. Gao, Quantum restricted Boltzmann machine universal for quantum computation. arXiv preprint arXiv:2005.11970, (2020).
    [34] T. Xiao, D. Bai, J. Fan, G. Zeng, Quantum Boltzmann machine algorithm with dimension-expanded equivalent Hamiltonian. Physical Review A 101, 032304 (2020).

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE