簡易檢索 / 詳目顯示

研究生: 陳彥名
Chen, Yen-Ming
論文名稱: 氧化石墨烯量子點提昇膠態鋰離子電池之研究
Graphene Oxide Quantum Dots for High Performance Gel-state Lithium Ion Batteries
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 149
中文關鍵詞: 鋰離子電池聚丙烯腈膠態高分子電解質氧化石墨烯量子點
外文關鍵詞: lithium-ion battery, gel polymer electrolyte, poly(acrylonitrile), filler, graphene oxide quantum dots, cluster ions
相關次數: 點閱:151下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚丙烯腈(Poly(acrylonitrile-co-vinyl acetate) (PAV))高分子為主架構,混摻Poly(methyl methacrylate) (PMMA)高分子,並添加氧化石墨烯量子點(GOQDs)強化性能,再經過靜電紡絲方法製備出高分子薄膜,最後將其浸泡於有機電解液(LE)中24小時,即可得到本研究之膠態高分子電解質。此外本研究進一步探討三種不同尺寸之氧化石墨烯量子點(QD11、QD7、QD3)對整體電解質系統之影響,其所形成之膠態電解質稱作GPE-PAVM:QD11、GPE-PAVM:QD7與GPE-PAVM:QD3。
    首先在氧化石墨烯量子點的測試上,經由TEM、AFM與Mott Schottky測試,鑑定其形貌、粒徑大小與半導體性質。結果顯示本研究之氧化石墨烯量子點具有P-type 半導體特性,且尺寸都相當微小、分散性也相當好,因此對於提升整體系統吸引負離子(PF6¯)的接觸面積有相當程度的增加。接著藉由NMR、拉曼測試與鋰離子遷移常數分析,針對膠態高分子電解質系統內離子、溶劑分子、高分子官能基間交互作用進行探討。進而發現加入GOQDs的高分子電解質GPE-PAVM:QDx ( x = 3 or 7)可增加吸引PF6¯的數量,將溶劑中的離子團(Cluster ions)分散,並減少鋰離子與溶劑分子的配位數,使鋰離子所受到的阻力大為減小,加速鋰離子的傳遞。此性質也對電化學穩定電位窗、導離子度都有所提升。其中最小尺寸氧化石墨烯量子點(QD3)因為具有最大的接觸面積,因此其所形成的膠態高分子電解質(GPE-PAVM:QD3)則具有最好的效果。在半電池阻力分析及壓降分析,可以得知GPE-PAVM:QD3系統皆具有較低阻力值,此結果可證實其對於鋰離子傳遞的幫助甚大。本研究之電池性能測試是使用磷酸鋰鐵搭配鋰金屬組裝成半電池測試,比較SLE (商用隔膜)、GPE-PAVM (未加入GOQDs)、GPE-PAVM:QD11、GPE-PAVM:QD7與GPE-PAVM:QD3的差異。在高速充放電(20 C-rate) 時GPE-PAVM:QD3仍擁有52.1 mAh g-1之高放電量。在高速(5 C-rate)長效穩定性測試方面,進行500圈長效充放電測試後,GPE-PAVM:QD3半電池仍可穩定維持完美100%的效能。

    This study incorporates graphene oxide quantum dots (GOQDs) into a gel polymer electrolyte (GPE) designed for lithium ion batteries (LIBs). The GPE comprises poly(acrylonitrile-co-vinyl acetate) copolymer (PVA) blending poly(methyl methacrylate) (PMMA) as a host swelled by a liquid electrolyte (LE) of 1 M LiPF6 in a carbonate solvent. The present study finds that the QD3, PVA, and PMMA incorporated GPE-PAVM:QD3 system have excellent performance because it has strongly interaction with PF6− anions to effectively disperse the cluster ions and decreased the solvation degree of Li+ that accelerate the transport of Li+ ion. GPE-PAVM:QD3 has a high Li+ transference number (0.77). Immobilization of PF6− anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a half-cell Li / electrolyte / PAV+LiFePO4 battery, which exhibits low SEI and overall resistances. The Li / electrolyte / PAV+LiFePO4 battery delivers high capacity of 52 mAh g−1 even at 20 C and presents 100% capacity retention after 500 charge−discharge cycles at 5 C, respectively.

    第一章緒論 1 1-1前言-電池發展與介紹 1 1-3鋰電池與鋰離子二次電池 3 1-3.1 裝置構造 4 1-3.2 工作原理 4 1-4電解質 6 1-4.1 液態有機電解質 6 1-4.2 固態高分子電解質 8 1-4.3 膠態高分子電解質 11 1-4.4固態鋰陶瓷電解質 12 1-5電極材料 14 1-5.1 正極材料 14 1-5.2 負極材料 18 1-6不同電池系統 20 1-6.1鋰硫電池 20 1-6.2鋁電池 23 1-6.3鈉/鎂電池 25 1-6.4鋰空氣電池 28 1-7常見鋰離子電池專有名詞與計算 30 1-7.1理論電容計算 30 1-7.2鋰電池專有名詞 31 1-7.3電池組串並聯計算 32 1-8全球鋰電池商業概況 34 1-9研究動機與目的 37 第二章理論說明與文獻回顧 38 2-1聚丙烯腈性質與回顧 38 2-2電紡絲技術(Electrospinning) 40 2-3導離子度 43 2-4 正離子遷移常數 45 第三章實驗方法與儀器原理介紹 48 3-1 實驗藥品 48 3-2 實驗儀器設備 49 3-3 氧化石墨烯量子點製備 51 3-4 膠態高分子電解質製備 52 3-5鈕扣型電池(coin-cell)組裝 54 3-6實驗分析儀器與裝置分析儀器原理簡介 55 3-6.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 55 3-6.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM ) 57 3-6.3核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 58 3-6.3拉曼光譜分析(Raman Spectrum) 62 3-6.4半導體–電解質之介面分析(Semiconductor-Electrolyte Interfance) 64 3-7電化學測試 67 3-7.1 導離子度(Ionic conductivity, σ) 67 3-7.2 線性掃描伏安法(Linear sweep voltammogram, LSV) 67 3-7.3 鋰離子遷移常數 (Lithium transference number, tLi+) 67 3-7.4電池阻力測試 68 3-8電池性能測試 69 3-8.1 LiFePO4正極之極片製作 69 3-8.2 LiFePO4半電池 69 3-9實驗流程 70 第四章結果與討論 71 4-1氧化石墨烯量子點物理分析與鑑定 73 4-1.1 TEM與AFM分析 73 4-1.2 半導體性質分析 76 4-2膠態高分子電解質內部分析 77 4-2.1 高分子膜形貌 77 4-2.2 SEM分析 80 4-2.3 TGA分析 81 4-2.4 NMR分析 83 4-2.5 Raman分析 85 4-3膠態高分子電解質電化學分析 89 4-3.1 離子傳導度(Ionic conductivity) 89 4-3.2 鋰離子遷移數(Lithium transference number, tLi+) 94 4-3.3電化學穩定度量測 98 4-4 Li|LiFePO4半電池性能測試 100 4-4.1 LiFePO4半電池充放電測試 100 4-4.2 LiFePO4半電池界面阻力測試 105 4-4.3 LiFePO4半電池voltage drop分析 108 4-4.4 LiFePO4半電池長效測試 110 4-4.5 PVDF+LiFePO4半電池性能測試 112 4-4.6 電池短路性能測試 114 4-4.7 Ragone plot 116 4-5 文獻比較 118 第五章結論與建議 121 參考文獻 123

    1. C.-H. Tsao, and P.-L. Kuo, Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. Journal of Membrane Science 489, 36-42 (2015).
    2. L.-Y. Huang, Y.-C. Shih, S.-H. Wang, P.-L. Kuo, and H. Teng, Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry A 2, 10492 (2014).
    3. T. Chen et al., Investigation on high-safety lithium ion battery using polyethylene supported poly(methyl methacrylate-acrylonitrile-butyl acrylate) copolymer based gel electrolyte. Electrochimica Acta 191, 923-932 (2016).
    4. H.-S. Jeong, E.-S. Choi, and S.-Y. Lee, Composition ratio-dependent structural evolution of SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separators for lithium-ion batteries. Electrochimica Acta 86, 317-322 (2012).
    5. Y.-S. Lee et al., Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochemistry Communications 17, 18-21 (2012).
    6. M. Walkowiak, M. Osińska, T. Jesionowski, and K. Siwińska-Stefańska, Synthesis and characterization of a new hybrid TiO2/SiO2 filler for lithium conducting gel electrolytes. Open Chemistry 8, (2010).
    7. G. B. Appetecchi, P. Romagnoli, and B. Scrosati, Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochemistry Communications 3, 281-284 (2001).
    8. S. Gomari, M. Esfandeh, and I. Ghasemi, All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene. Solid State Ionics 303, 37-46 (2017).
    9. M. Yuan, J. Erdman, C. Tang, and H. Ardebili, High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4, 59637-59642 (2014).
    10. W. Liu et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15, 2740-2745 (2015).
    11. J. W. Choi, and D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1, 16013 (2016).
    12. A. Vlad, N. Singh, C. Galande, and P. M. Ajayan, Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials 5, 1402115 (2015).
    13. N. S. Choi et al., Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed Engl 51, 9994-10024 (2012).
    14. L. Long, S. Wang, M. Xiao, and Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038-10069 (2016).
    15. F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).
    16. B. K. Choi, Y. W. Kim, and K. H. Shin, Effects of ceramic fillers on the electrical properties of (PEO)(16)LiClO4 electrolytes. Journal of Power Sources 68, 357-360 (1997).
    17. S. Jung et al., Fillers for Solid-State Polymer Electrolytes: Highlight. Bull. Korean Chem. Soc. 30, 2355-2361 (2009).
    18. J. H. Shin, K. W. Kim, H. J. Ahn, and J. H. Ahn, Electrochemical properties and interfacial stability of (PEO)(10)LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 95, 148-156 (2002).
    19. W. Krawiec, L. G. Scanlon, J. P. Fellner, R. A. Vaia, and E. P. Giannelis, Polymer Nanocomposites - a new strategy for synthesizing solid electrolytes for rechareable lithium battery. Journal of Power Sources 54, 310-315 (1995).
    20. T.-F. Yeh, C.-Y. Teng, L.-C. Chen, S.-J. Chen, and H. Teng, Graphene oxide-based nanomaterials for efficient photoenergy conversion. J. Mater. Chem. A 4, 2014-2048 (2016).
    21. 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術 Lithium ion batteries : principles and key technologies. 台灣, 五南圖書出版股份有限公司, (2010).
    22. J.Hajek, French Patent. (1949).
    23. J. B. D. W. Murphy, and B. C. H. Steele Materials for Advanced Batteries. New York : Plenum Press, (1980).
    24. S. Basu, Editor. USA Patent 4, 423 (1983).
    25. T. Ohzuku, and A. Ueda, Solid-state redox reactions of LiCoO2 (R(3)over-bar-m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972-2977 (1994).
    26. D. Rahner, S. Machill, H. Schlorb, K. Siury, and M. Kloss, Intercalation materials for lithium rechargeable batteries. Solid State Ionics 86-8, 891-896 (1996).
    27. G. T. K. Fey, W. Li, and J. R. Dahn, LiNiVO4 - A 4.8 Volt electrode material for lithium cells. J. Electrochem. Soc. 141, 2279-2282 (1994).
    28. J. O. Besenhard, M. Hess, and P. Komenda, Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 40-1, 525-529 (1990).
    29. T.Sasaki et al., Lithium ion batteries. Citi Research, (2012).
    30. R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3, 487-516 (2016).
    31. J. S. Tonge, and D. F. Shriver, Increased dimensional stability in ionically conducting polyphosphazenes systems. J. Electrochem. Soc. 134, 269-270 (1987).
    32. X. Andrieu et al., Solid polymer electrolytes based on statistical poly(ethylene oxide-propylene oxide) copolymers. Electrochimica Acta 40, 2295-2299 (1995).
    33. A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, and F. K. Shokoohi, Proceedings of the Fifth International Symposium on Polymer Electrolyte. Uppsala, Sweden, 11-16 (1996).
    34. H. R. Allcock et al., Polyphosphazenes with etheric side groups - prospective biomedical and solid electrolyte polymers. Macromolecules 19, 1508-1512 (1986).
    35. M. Shibata, T. Kobayashi, R. Yosomiya, and M. Seki, Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes. European Polymer Journal 36, 485-490 (2000).
    36. T. Fujinami, A. Tokimune, M. A. Mehta, D. F. Shriver, and G. C. Rawsky, Siloxyaluminate polymers with high Li+ ion conductivity. Chem. Mat. 9, 2236-2239 (1997).
    37. G. Feuillade, and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 5, 63-69 (1975).
    38. Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, Inoic-conductivity of electrolytes formed PEO-LICF3SO3 complex with low-molecular-weight poly(ethylene glycol). J. Mater. Sci. 22, 1845-1849 (1987).
    39. A.S.Gozdz, C. N. Schmutz, and J. M. Tarascon, Polymeric electrolytic cell separator membrane. US, 91 (1995).
    40. Y. Wang et al., Design principles for solid-state lithium superionic conductors. Nat Mater 14, 1026-1031 (2015).
    41. P. G. Bruce, and A. R. West, The AC conductivity of polycrystalline LISICON, LI2+2XZN1-XGEO4, and a model for intergranular constriction resisrances. J. Electrochem. Soc. 130, 662-669 (1983).
    42. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic-conductivity of solid electrolytes base on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023-1027 (1990).
    43. Y. Inaguma et al., High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689-693 (1993).
    44. R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem.-Int. Edit. 46, 7778-7781 (2007).
    45. X. H. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
    46. N. Kamaya et al., A lithium superionic conductor. Nat Mater 10, 682-686 (2011).
    47. Y. Kato et al., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 1, 16030 (2016).
    48. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188-1194 (1997).
    49. J. B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14-18 (2014).
    50. A. Manthiram, Y. Z. Fu, and Y. S. Su, Challenges and Prospects of Lithium-Sulfur Batteries. Accounts Chem. Res. 46, 1125-1134 (2013).
    51. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O-2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
    52. Z. Peng et al., Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium–sulfur cathode. Journal of Power Sources 282, 70-78 (2015).
    53. H.-J. Peng et al., Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries. Advanced Functional Materials 24, 2772-2781 (2014).
    54. N. Angulakshmi, and A. M. Stephan, Efficient Electrolytes for Lithium–Sulfur Batteries. Frontiers in Energy Research 3, (2015).
    55. M. Barghamadi, A. Kapoor, and C. Wen, A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. J. Electrochem. Soc. 160, A1256-A1263 (2013).
    56. M. C. Lin et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325-328 (2015).
    57. M. Sawicki, and L. L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 5, 53129-53154 (2015).
    58. K.-N. Jung et al., Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. J. Mater. Chem. A 4, 14050-14068 (2016).
    59. H. Zhou, Y. Wang, H. Li, and P. He, The development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem 3, 1009-1019 (2010).
    60. C. L. Chen, H. S. Teng, and Y. L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). J. Mater. Chem. 21, 628-632 (2011).
    61. H. Akashi, K. Sekai, and K. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochimica Acta 43, 1193-1197 (1998).
    62. P. Carol, P. Ramakrishnan, B. John, and G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. Journal of Power Sources 196, 10156-10162 (2011).
    63. P. Raghavan et al., Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources 196, 6742-6749 (2011).
    64. G. B. Appetecchi, F. Croce, and B. Scrosati, Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrokytes. Electrochimica Acta 40, 991-997 (1995).
    65. M. Watanabe et al., High lithium ionic-conductivity of polymeric solid electrolytes. Makromolekulare Chemie-Rapid Communications 2, 741-744 (1981).
    66. Z. X. Wang, B. Y. Huang, R. J. Xue, X. J. Huang, and L. Q. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 121, 141-156 (1999).
    67. H. Huang, L. Q. Chen, X. J. Huang, and R. J. Xue, Studies on PAN-based lithium salt complex. Electrochimica Acta 37, 1671-1673 (1992).
    68. X. P. Hou, and K. S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. J. Solid State Electrochem. 5, 293-299 (2001).
    69. R. Prasanth, V. Aravindan, and M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemical characterization. Journal of Power Sources 202, 299-307 (2012).
    70. F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjanczyk, and W. Bzducha, Impedance and polarisation studies of new lithium polyelectrolyte gels. Journal of Power Sources 81, 766-771 (1999).
    71. H. S. Min, D. W. Kang, D. Y. Lee, and D. W. Kim, Gel polymer electrolytes prepared with porous membranes based on an acrylonitrile/methyl methacrylate copolymer. J. Polym. Sci. Pt. B-Polym. Phys. 40, 1496-1502 (2002).
    72. S. H. Wang, S. S. Hou, P. L. Kuo, and H. Teng, Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. ACS Appl Mater Interfaces 5, 8477-8485 (2013).
    73. M. M. Nasef, R. R. Suppiah, and K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics 171, 243-249 (2004).
    74. B. K. Choi, Y. W. Kim, and H. K. Shin, Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochimica Acta 45, 1371-1374 (2000).
    75. Z. L. Wang, and Z. Y. Tang, Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery. Mater. Chem. Phys. 82, 16-20 (2003).
    76. J. W. Choi et al., Microporous poly(vinylidene fluodde-co-hexafluoropropylene) polymer electrolytes for lithium/sulfur cells. J. Ind. Eng. Chem. 12, 939-949 (2006).
    77. P. Raghavan et al., Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study. Mater. Res. Bull. 45, 362-366 (2010).
    78. X. Li et al., Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. Journal of Power Sources 167, 491-498 (2007).
    79. K. Garg, and G. L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics 5, 19 (2011).
    80. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223-2253 (2003).
    81. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40, 7397-7407 (1999).
    82. B. Sundaray, V. Subramanian, and T. S. Natarajan, K. Krishnamurthy, Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl. Phys. Lett. 88, 3 (2006).
    83. M.J.C.Plancha, C. A. C. Sequeira, and D. M. F. Santos, Polymer electrolytes. UK: Woodhead Publishing Limited, (2010).
    84. P. G. Bruce, M. T. Hardgrave, and C. A. Vincent, The determination of transference numbers in solid polymer electrolytes using the hittorf method. Solid State Ionics 53, 1087-1094 (1992).
    85. J. Evans, C. A. Vincent, and P. G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324-2328 (1987).
    86. P. G. Bruce, and C. A. Vincent, Steady-state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 225, 1-17 (1987).
    87. L.-s. Li, X. Yan, Colloidal Graphene Quantum Dots. The Journal of Physical Chemistry Letters 1, 2572-2576 (2010).
    88. S. H. Wang et al., Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries. ACS Appl Mater Interfaces 8, 14776-14787 (2016).
    89. T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater 26, 3297-3303 (2014).
    90. C. G. Barlow, Reaction of water with hexafluorophosphates and with Li bis(perfluoroethylsulfonyl)imide salt. Electrochem. Solid State Lett. 2, 362-364 (1999).
    91. A.Khursheed, Scanning Electron Microscope Optics and Spectrometer. Singapore: World Scientific Publishing Company, 416 (2010).
    92. D. Williams, and C. B. Carter, Transmission Electron Microscopy. (1996).
    93. G. A. Meek, A. D. Baczewski, D. J. Little, and B. G. Levine, Polaronic Relaxation by Three-Electron Bond Formation in Graphitic Carbon Nitrides. J. Phys. Chem. C 118, 4023-4032 (2014).
    94. N. R. Wilson et al., Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano 3, 2547-2556 (2009).
    95. X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, and H. J. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
    96. S. Srivastava, J. L. Schaefer, Z. C. Yang, Z. Y. Tu, and L. A. Archer, 25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage. Adv. Mater. 26, 201-233 (2014).
    97. E. F. C. Chaúque, L. N. Dlamini, A. A. Adelodun, C. J. Greyling, and J. Catherine Ngila, Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Applied Surface Science 369, 19-28 (2016).
    98. S. S. Kim, and J. Lee, Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. Carbohydr Polym 102, 231-237 (2014).
    99. Q. Wang, Y. Chen, R. Liu, H. Liu, and Z. Li, Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers. Composites Part A: Applied Science and Manufacturing 43, 1869-1876 (2012).
    100. F.-A. Zhang, D.-K. Lee, and T. J. Pinnavaia, PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polym. Chem. 1, 107-113 (2010).
    101. K. Kimura, J. Motomatsu, and Y. Tominaga, Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes. The Journal of Physical Chemistry C 120, 12385-12391 (2016).
    102. C. M. Burke, V. Pande, A. Khetan, V. Viswanathan, and B. D. McCloskey, Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc Natl Acad Sci U S A 112, 9293-9298 (2015).
    103. Y. M. Cahen, P. R. Handy, E. T. Roach, and A. I. Popov, Spectroscopic studies of ionic solvation-16 lithiun-7 and chlorine-35 nuclear magnetic-resonance studies in various solvents. J. Phys. Chem. 79, 80-85 (1975).
    104. S. W. Choi, J. R. Kim, S. M. Jo, W. S. Lee, and Y. R. Kim, Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J. Electrochem. Soc. 152, A989-A995 (2005).
    105. S. K. Chaurasia, R. K. Singh, and S. Chandra, Ion-polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: A Raman study. Vib. Spectrosc. 68, 190-195 (2013).
    106. C. M. Burba, and R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6. J. Phys. Chem. B 109, 15161-15164 (2005).
    107. K. Kondo et al., Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions. J. Phys. Chem. B 104, 5040-5044 (2000).
    108. R. Aroca, R. Nazri, G. A. Nazri, A. J. Camargo, and M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. J. Solut. Chem. 29, 1047-1060 (2000).
    109. P. L. Kuo, W. J. Liang, and T. Y. Chen, Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 44, 2957-2964 (2003).
    110. J. Saunier, F. Alloin, J. Y. Sanchez, and G. Caillon, Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. Journal of Power Sources 119, 454-459 (2003).
    111. M. H. Cohen, and D. Turnbull, Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164-1169 (1959).
    112. H. H. Sumathipala, J. Hassoun, S. Panero, B. Scrosati, Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry 38, 39-42 (2007).
    113. F. B. Dias, L. Plomp, and J. B. J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources 88, 169-191 (2000).
    114. S. Leroy et al., Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surface and Interface Analysis 37, 773-781 (2005).
    115. J. S. Gnanaraj, M. D. Levi, Y. Gofer, D. Aurbach, and M. Schmidt, LiPF3(CF2CF3)(3): A salt for rechargeable lithium ion batteries. J. Electrochem. Soc. 150, A445-A454 (2003).
    116. Y. Zhang et al., Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery. Journal of Power Sources 358, 1-12 (2017).
    117. S. B. Chikkannanavar, D. M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries. Journal of Power Sources 248, 91-100 (2014).
    118. A. Kraytsberg, and Y. Ein-Eli, A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2, 922-939 (2012).
    119. G. T.-K. Fey, New High Voltage Cathode Materials for Rechargeable Lithium Batteries. Active and Passive Electronic Components 18, 11-21 (1995).
    120. A. Yamada, H. Koizumi, N. Sonoyama, and R. Kanno, Phase change in LixFePO4. Electrochem. Solid State Lett. 8, A409-A413 (2005).
    121. S. S. Zhang, K. Xu, and T. R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta 49, 1057-1061 (2004).
    122. B. Saha, and K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework. Annual Conference of the Prognostics and Health Management Society, (2009).
    123. T. Zhang et al., A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661-1663 (2010).
    124. J. Y. Luo, and Y. Y. Xia, Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Advanced Functional Materials 17, 3877-3884 (2007).

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE