簡易檢索 / 詳目顯示

研究生: 呂睿鳴
Lu, Jui-Ming
論文名稱: 凝血酶調節素在成骨細胞中所扮演的角色
The Role of Thrombomodulin in Osteoblasts
指導教授: 吳華林
Lu, Jui-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 66
中文關鍵詞: 凝血酶調節素骨癒合成骨細胞rhomboid-like 2 蛋白酶 (RDBDL2)
外文關鍵詞: Thrombomodulin, Bone healing, Osteoblast, rhomboid-like 2 (RHBDL2)
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素(TM);是一個含有五個結構域的第一型穿膜蛋白。此蛋白質被發現
    表現在許多不同種類的細胞中。例如:角質細胞、巨噬細胞、心肌細胞、內皮細
    胞以及蝕骨細胞。在我們最近的研究中發現,凝血酶調節素在巨噬細胞分化成蝕
    骨細胞的過程中扮演了負面調節者的角色,這意味著凝血酶調節素會抑制骨質的
    吸收。人體的骨質密度的恆定主要就是由蝕骨細胞以及成骨細胞之間功能的互相
    調控來達成。我們假設凝血酶調節素除了在蝕骨細胞裡扮演著抑制的角色外,很
    可能在成骨細胞裡也有重要的功能。在過去的研究中雖然發現在成骨細胞內,凝
    血酶調節素的基因可以被維他命 D3 刺激而大量表現,但針對凝血酶調節素在成
    骨細胞的生理功能卻幾乎未被仔細研究過。
    成骨細胞在骨生成中扮演著關鍵的角色,因為可以在骨損傷的癒合上看到成骨細
    胞明顯的活化。同時,凝血酶調節素被發現可以促進表皮的傷口癒合。因此,我
    們假設凝血酶調節素應該在骨癒合中扮演重要的角色。根據表皮傷口癒合的機制,
    表皮細胞膜上的凝血酶調節素會因為傷口的刺激而表現量上升。同時會被膜上的
    蛋白酶 rhomboid-like 2 (RDBDL2)從凝血酶調節素的第四個結構域-穿膜域進行
    剪切,導致凝血酶調節素被釋放到培養液中;簡稱為可溶性的凝血酶調節素(sTM)。
    並且 sTM 具有促進表皮傷口癒合的能力。首先,將人類的成骨細胞株(MG63)培
    養在不含血清的培養液中,凝血酶調節素可以在培養液中被偵測到。再者,經由
    模擬骨損傷的條件可以刺激 MG63 細胞表面的凝血酶調節素以及 RHBDL2 蛋白
    酶表現量上升,並導致更多水溶性的凝血酶調節素被釋放到細胞外。我們發現這
    些被釋放出來的凝血酶調節素可以影響成骨細胞的許多功能,例如:人類成骨細
    胞(MG63)或是小鼠成骨細胞(MC3T3E1)經過損傷的刺激後得到的上層培養液,
    都有刺激成骨細胞的爬行能力增加。反之;利用 shRNA 抑制凝血酶調節素的細
    胞則抑制了其促進爬行的能力。而類凝血酶調節素生肽 168X (TM like peptide
    168X) 也具有促進爬行效果,且與劑量呈正相關。此外,TM like peptide 168X 也
    有刺激成骨細胞增生以及鈣鹽礦化的能力。進一步,我們利用人工引發第一型糖
    尿病的小鼠進行顱骨穿孔的實驗,我們也觀察到 TM like peptide 168X 具有加速
    骨癒合的效果。因此我們的結果顯示凝血酶調節素的確參與成骨細胞的生理功能,
    而且凝血酶調節素對於治療骨損傷具有臨床的應用價值。

    Thrombomodulin (TM), a type I transmembrane glycoprotein containing five functional
    domains, is expressed in various cell types including endothelial cells, keratinocytes,
    macrophages, and osteoblasts. Our recent report indicated that thrombomodulin domain
    one (TMD1) functions as a negative regulator in osteoclastogenesis. However, the
    physiological functions of TM in osteoblasts has not been studied yet. Osteoblasts which
    are the major source of bone matrix are particularly active in bone healing. Our previous
    studies showed that epithelial TM plays a critical role in promoting cutaneous wound
    healing at least partially through the function of soluble TM (sTM) which is released from
    the cell surface by a member of rhomboid serine protease family (rhomboid-like-2,
    RHBDL2). We hypothesized that osteoblastic TM also has a role in mediating bone healing
    through the production of sTM. First, we demonstrated that sTM can be detected in the
    serum-free conditioned medium (CM) of human osteoblast cell line, MG-63 cells.
    Furthermore, expression levels of full-length TM, RHBDL2 and sTM in MG-63 culture
    were upregulated after scratch injury. The upregulation of sTM expression was inhibited
    by treatment with RHBDL2 inhibitor-3, 4-dichloroisocoumarin (DCI). The CM of injury
    cells but not the CM from TM-silenced cells could promote cell migration. In addition, the
    TM like peptide 168X could promote cell migration, proliferation and calcium deposition
    in MG63 cells. Furthermore, we demonstrated that TM like peptide 168X could enhance
    calvarial bone healing in diabetic mice. In conclusion, we demonstrated the physiological
    significance of osteoblastic TM in bone healing. sTM may have some application potential
    for bone-related disorders.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgement Ⅲ Contents Ⅳ Abbreviation Ⅶ Instruments Ⅸ Introduction 1 I. Physiology Function of Bone 1 II. The Basic Mechanism of Bone Healing 2 III. Function of Osteoblast 3 IV. Function of Osteoclast 4 V. The Structure and Function of TM 5 VI. Physiological Function of TM or Soluble TM in Bone 6 Specific Aims 7 Materials and Methods 8 I. Cell Culture 8 II. Cell Counting 9 III. Cell Freezing 10 IV. Cell Thawing 11 V. shRNA MG63 TM Knockdown 12 VI. Time Course Starvation Assay 18 VII. Scratch Assay 20 VIII. DCI Assay 21 IX. Western Blot Analysis 23 V X. Transwell Migration Assay 26 XI. Proliferation Assay 28 XII. Alizarin Red Staining 29 XIII. Mice Calvaria Wound Healing Assay 31 XIV. Vitamin D3 Assay 32 XV. IGF-1 Assay 34 Results 36 I. sTM can be produced by osteoblasts 36 II. Injury stimulation can promote the expression of full-length TM, RHBDL2 and sTM 36 III. RHBDL2 is proved to be the direct cause of sTM shedding 36 IV. Factors in the conditioned medium of injured cells promote cell migration in osteoblasts 37 V. Promoting effect of sTM in injured-CM is abolished by RHBDL2 inhibitor (DCI) treatment 37 VI. The CM of MG63 cell line and its migration promoting ability are reduced by TM shRNA 38 VII. TM like peptide 168X promotes osteoblasts migration 38 VIII. TM like peptide 168X promotes enhancement of cell proliferation in osteoblasts 39 IX. Osteoblastic TM is important for cell proliferation 39 X. TM like peptide 168X promotes osteoblasts mineralization 39 XI. TM like peptide 168X promotes carlvaria bone healing on mice 40 XII. Vitamin D3 promotes TM expression in osteoblasts 40 XIII. IGF-1 induces proliferative signals in osteoblasts 41 XIV. TM like peptide 168X has no effect on D1 (mouse MSCs) cell differentiation 41 Conclusion 43 VI Discussion 44 Figures 46 1. Expression of sTM by MG63 human osteoblast-like cells 46 2. Expressions of TM, RHBDL2 and sTM are enhanced by wound injury 47 3. Production of sTM are inhibited by RHBDL2 inhibitor (DCI) under scratched condition 48 4. Factors in scratched CM function to promote cell migration 49 5. Promoting effect of sTM in injured-CM is abolished by RHBDL2 inhibitor (DCI) treatment 50 6. Promoting effect of sTM in injured-CM is abolished by TM silencing in MG63 cells 51 7. TM like peptide 168X dose-dependently promotes cell migration 52 8. TM like peptide 168X enhances cell proliferation 53 9. Effect of full-length TM on cell proliferation 54 10. TM like peptide 168X enhances cell mineralization in MG-63 cells 55 11. TM like peptide 168X enhances calvaria healing in STZ-induced diabetic mice 56 12. 25-hydroxyvitamin D3 induces TM expression in osteoblasts 57 13. IGF-1 induces Akt and ERK phosphorylation in MG63 cells 58 14. TM like peptide 168X has no effect on D1 cell (mouse MSCs) differentiation into osteoblasts 59 15. TM expression is enhances during D1 cell (mouse MSCs) differentiation 60 16. Model of sTM generation and its effect on osteoblasts 61 Appendix 62 1. Molecular structure and functions of TM 62 References 63

    1. Abeyama, K., D. M. Stern, Y. Ito, K.-i. Kawahara, Y. Yoshimoto, M. Tanaka, T.
    Uchimura, N. Ida, Y. Yamazaki, S. Yamada, Y. Yamamoto, H. Yamamoto, S. Iino, N.
    Taniguchi and I. Maruyama (2005). "The N-terminal domain of thrombomodulin
    sequesters high-mobility group-B1 protein, a novel antiinflammatory
    mechanism." The Journal of Clinical Investigation 115(5): 1267-1274.
    2. AI-Aql, Z. S., A. S. Alagl, D. T. Graves, L. C. Gerstenfeld and T. A. Einhorn (2008).
    "Molecular Mechanisms Controlling Bone Formation during Fracture Healing and
    Distraction Osteogenesis." Journal of Dental Research 87(2): 107-118.
    3. Bonewald, L. F. (2011). "The Amazing Osteocyte." Journal of Bone and Mineral
    Research 26(2): 229-238.
    4. Breur, G. J., B. A. VanEnkevort, C. E. Farnum and N. J. Wilsman (1991). "Linear
    relationship between the volume of hypertrophic chondrocytes and the rate of
    longitudinal bone growth in growth plates." J Orthop Res 9(3): 348-359.
    5. Chao, T. H., W. C. Tsai, J. Y. Chen, P. Y. Liu, H. C. Chung, S. Y. Tseng, C. H. Kuo, G. Y.
    Shi, H. L. Wu and Y. H. Li (2014). "Soluble thrombomodulin is a paracrine antiapoptotic factor for vascular endothelial protection." Int J Cardiol 172(2): 340-349.
    6. Cheng, T.-L., Y.-T. Wu, H.-Y. Lin, F.-C. Hsu, S.-K. Liu, B.-I. Chang, W.-S. Chen, C.-H.
    Lai, G.-Y. Shi and H.-L. Wu (2011). "Functions of Rhomboid Family Protease
    RHBDL2 and Thrombomodulin in Wound Healing." Journal of Investigative
    Dermatology 131(12): 2486-2494.
    7. Cheng, T. L., C. H. Lai, S. J. Shieh, Y. B. Jou, J. L. Yeh, A. L. Yang, Y. H. Wang, C. Z.
    Wang, C. H. Chen, G. Y. Shi, M. L. Ho and H. L. Wu (2016). "Myeloid
    thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory
    64
    bone loss." Sci Rep 6: 28340.
    8. Clarke, B. (2008). "Normal bone anatomy and physiology." Clin J Am Soc Nephrol
    3 Suppl 3: S131-139.
    9. Conway, E. M. (2012). "Thrombomodulin and its role in inflammation." Seminars
    in Immunopathology 34(1): 107-125.
    10. Conway, E. M., M.-C. Boffa, B. Nowakowski and M. Steiner-Mosonyi (1992). "An
    ultrastructural study of thrombomodulin endocytosis: Internalization occurs via
    clathrin-coated and non-coated pits." Journal of Cellular Physiology 151(3): 604-
    612.
    11. Czekanska, E. M., M. J. Stoddart, R. G. Richards and J. S. Hayes (2012). "In search
    of an osteoblast cell model for in vitro research." Eur Cell Mater 24: 1-17.
    12. Einhorn, T. A. (1998). "The cell and molecular biology of fracture healing." Clin
    Orthop Relat Res(355 Suppl): S7-21.
    13. Gerstenfeld, L. C., Y. M. Alkhiary, E. A. Krall, F. H. Nicholls, S. N. Stapleton, J. L. Fitch,
    M. Bauer, R. Kayal, D. T. Graves, K. J. Jepsen and T. A. Einhorn (2006). "Threedimensional reconstruction of fracture callus morphogenesis." J Histochem
    Cytochem 54(11): 1215-1228.
    14. Gerstenfeld, L. C., D. M. Cullinane, G. L. Barnes, D. T. Graves and T. A. Einhorn
    (2003). "Fracture healing as a post-natal developmental process: molecular,
    spatial, and temporal aspects of its regulation." J Cell Biochem 88(5): 873-884.
    15. Hsu, Y.-Y., G.-Y. Shi, C.-H. Kuo, S.-L. Liu, C.-M. Wu, C.-Y. Ma, F.-Y. Lin, H.-Y. Yang and
    H.-L. Wu (2012). "Thrombomodulin is an ezrin-interacting protein that controls
    epithelial morphology and promotes collective cell migration." The FASEB Journal
    26(8): 3440-3452.
    16. Isermann, B., R. Sood, R. Pawlinski, M. Zogg, S. Kalloway, J. L. Degen, N. Mackman
    and H. Weiler (2003). "The thrombomodulin-protein C system is essential for the
    65
    maintenance of pregnancy." Nat Med 9(3): 331-337.
    17. Kitaori, T., H. Ito, E. M. Schwarz, R. Tsutsumi, H. Yoshitomi, S. Oishi, M. Nakano, N.
    Fujii, T. Nagasawa and T. Nakamura (2009). "Stromal cell-derived factor 1/CXCR4
    signaling is critical for the recruitment of mesenchymal stem cells to the fracture
    site during skeletal repair in a mouse model." Arthritis Rheum 60(3): 813-823.
    18. Lohi, O., S. Urban and M. Freeman (2004). "Diverse Substrate Recognition
    Mechanisms for Rhomboids: Thrombomodulin Is Cleaved by Mammalian
    Rhomboids." Current Biology 14(3): 236-241.
    19. Loi, F., L. A. Córdova, J. Pajarinen, T.-h. Lin, Z. Yao and S. B. Goodman (2016).
    "Inflammation, fracture and bone repair." Bone 86: 119-130.
    20. Maillard, C., M. Berruyer, C. M. Serre, J. Amiral, M. Dechavanne and P. D. Delmas
    (1993). "Thrombomodulin is synthesized by osteoblasts, stimulated by 1,25-
    (OH)2D3 and activates protein C at their cell membrane." Endocrinology 133(2):
    668-674.
    21. Marsell, R. and T. A. Einhorn (2011). "THE BIOLOGY OF FRACTURE HEALING."
    Injury 42(6): 551-555.
    22. Qi, H. H., J. Bao, Q. Zhang, B. Ma, G. Y. Gu, P. L. Zhang, G. Ou-Yang, Z. M. Wu, H. J.
    Ying and P. K. Ou-Yang (2016). "Wnt/beta-catenin signaling plays an important
    role in the protective effects of FDP-Sr against oxidative stress induced apoptosis
    in MC3T3-E1 cell." Bioorg Med Chem Lett 26(19): 4720-4723.
    23. Seuter, S., S. Heikkinen and C. Carlberg (2013). "Chromatin acetylation at
    transcription start sites and vitamin D receptor binding regions relates to effects
    of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene
    expression." Nucleic Acids Research 41(1): 110-124.
    24. Shi, C.-S., G.-Y. Shi, Y.-S. Chang, H.-S. Han, C.-H. Kuo, C. Liu, H.-C. Huang, Y.-J. Chang,
    P.-S. Chen and H.-L. Wu (2005). "Evidence of Human Thrombomodulin Domain as
    66
    a Novel Angiogenic Factor." Circulation 111(13): 1627-1636.
    25. Tarroni, P., I. Villa, E. Mrak, F. Zolezzi, M. Mattioli, C. Gattuso and A. Rubinacci
    (2012). "Microarray analysis of 1,25(OH)(2)D(3) regulated gene expression in
    human primary osteoblasts." J Cell Biochem 113(2): 640-649.
    26. Vaananen, H. K., H. Zhao, M. Mulari and J. M. Halleen (2000). "The cell biology of
    osteoclast function." Journal of Cell Science 113(3): 377-381.
    27. Wang, Z. and L. K. McCauley (2011). "Osteoclasts and odontoclasts: signaling
    pathways to development and disease." Oral Diseases 17(2): 129-142.
    28. Wu-Wong, J. R., M. Nakane and J. Ma (2007). "Vitamin D analogs modulate the
    expression of plasminogen activator inhibitor-1, thrombospondin-1 and
    thrombomodulin in human aortic smooth muscle cells." J Vasc Res 44(1): 11-18.
    29. Zhang, W., X. Shen, C. Wan, Q. Zhao, L. Zhang, Q. Zhou and L. Deng (2012). "Effects
    of insulin and insulin-like growth factor 1 on osteoblast proliferation and
    differentiation: differential signalling via Akt and ERK." Cell Biochem Funct 30(4):
    297-302.
    30. Zhang, Y., H. Weiler-Guettler, J. Chen, O. Wilhelm, Y. Deng, F. Qiu, K. Nakagawa, M.
    Klevesath, S. Wilhelm, H. Böhrer, M. Nakagawa, H. Graeff, E. Martin, D. M. Stern,
    R. D. Rosenberg, R. Ziegler and P. P. Nawroth (1998). "Thrombomodulin
    modulates growth of tumor cells independent of its anticoagulant activity."
    Journal of Clinical Investigation 101(7): 1301-1309.

    無法下載圖示 校內:2022-12-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE