簡易檢索 / 詳目顯示

研究生: 林庭宇
Lin, Ting-Yu
論文名稱: 射頻磁控濺鍍法於低溫成長ZnxFe3-xO4之研究
RF magnetron sputter deposition of ZnxFe3-xO4 films at low temperature
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 四氧化三鐵鐵氧體鐵磁材料薄膜磁控濺鍍
外文關鍵詞: Fe3O4, ferrite, ferromagnetic, thin film, sputter deposition
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 致謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 第1章 緒論 1 1-1 前言 1 1-2 磁性材料簡介 3 1-3 鐵氧體薄膜與CMOS整合 6 1-4 研究動機與目的 7 第2章 基礎理論與文獻回顧 8 2-1磁性來源與分類 8 2-1-1磁性分類 9 2-1-2磁滯曲線 12 2-1-3磁能與磁各向異性 13 2-2 鐵磁共振(Ferromagnetic Resonance)原理 20 2-3 尖晶石鐵氧體(Spinel ferrite)簡介 23 2-4 濺鍍原理 26 2-4-1 射頻濺鍍 28 2-4-2 磁控濺鍍 28 2-4-3 反應濺鍍 29 2-4-4 偏壓濺鍍 30 2-5 薄膜沉積原理 32 2-5-1 薄膜成長模式 34 2-5-2 薄膜微觀結構 35 第3章 實驗方法與步驟 37 3-1 實驗流程 37 3-2 實驗材料 38 3-3 靶材製備 39 3-3-1 固相合成法 39 3-3-2 氧化物靶材製作 39 3-4 薄膜製程 41 3-4-1 濺鍍系統 41 3-4-2 基板前處裡 42 3-4-3 濺鍍步驟及參數 43 3-5 分析儀器及原理 46 3-5-1 低掠角X光繞射分析儀(Grazing Incidence X-Ray Diffraction, GIXRD) 47 3-5-2 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 49 3-5-3 超導量子干涉磁化儀(Superconducting quantum interference vibrating sample magnetometer, SQUID VSM) 51 3-5-4 鐵磁共振儀(Ferromagnetic Resonance Spectrometer, FMR) 52 3-5-5 開爾文探針力顯微鏡(Kelvin Probe Force Microscope, KPFM) 54 3-5-6 拉曼光譜儀(Raman Spectrometer) 55 3-5-7 四線電阻量測 56 第4章 結果與討論 58 4-1 未摻雜之氧化鐵樣品分析 58 4-1-1 晶體結構分析 58 4-1-2 形貌分析 59 4-1-3 試片相純度分析 62 4-1-4 電性分析 67 4-1-5 磁性分析 70 4-2 摻雜之氧化鐵樣品分析 72 4-2-1 晶體結構分析 72 4-2-2形貌分析 74 4-2-3 電性分析 76 4-2-4 磁性分析 78 4-2-5 鐵磁共振 80 第5章 結論 83 參考文獻 85

    1. DRAFT - Concept paper – 5G deployment. IDATE DigiWorld, 2019.
    2. Harris, V.G., Modern Microwave Ferrites. IEEE, 2012. 48.
    3. Sudo, T., et al., Electromagnetic interference (EMI) of system-on-package (SOP). IEEE Transactions on Advanced Packaging, 2004. 27(2): p. 304-314.
    4. Burghartz, J.N. and B. Rejaei, On the design of RF spiral inductors on silicon. IEEE Transactions on Electron Devices, 2003. 50(3): p. 718-729.
    5. Gardner, D.S., et al., Review of On-Chip Inductor Structures With Magnetic Films. IEEE Transactions on Magnetics, 2009. 45(10): p. 4760-4766.
    6. Niknejad, A.M. and R.G. Meyer, Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE Journal of Solid-State Circuits, 1998. 33(10): p. 1470-1481.
    7. T. Maeda, H.T., N. Igarashi, Development of super low iron-loss P/M soft magnetic materials. Tech. Rev., 2005. 60: p. 3-90.
    8. Sai, R., et al., Magnetic Nanoferrites for RF CMOS: Enabling 5G and Beyond. Electrochemical Society Interface, 2017. 26(4): p. 71-76.
    9. Gardner, D.S., et al., Integrated On-Chip Inductors With Magnetic Films. IEEE Transactions on Magnetics, 2007. 43(6): p. 2615-2617.
    10. Vroubel, M., et al., Integrated tunable magnetic RF inductor. IEEE Electron Device Letters, 2004. 25(12): p. 787-789.
    11. Wei Xu, H.W., Sub-100 μm scale on-chip inductors with CoZrTa for GHz applications. Journal of Applied Physics, 2011.
    12. Brand, O., Microsensor integration into systems-on-chip. Proceedings of the Ieee, 2006. 94(6): p. 1160-1176.
    13. Ni, Z., et al., Design and Analysis of Vertical Nanoparticles-Magnetic-Cored Inductors for RF ICs. IEEE Transactions on Electron Devices, 2013. 60(4): p. 1427-1435.
    14. al., K.e., Ferrite Thin Film, Method of Manufacturing the Same and Electromangetic Noise Suppressor Using the Same. US Patent 7648774 B2, 2008.
    15. Subramani, A.K., et al., Spinel ferrite films by a novel solution process for high frequency applications. Materials Chemistry and Physics, 2010. 123(1): p. 16-19.
    16. Sivakumar, M., et al., Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: Observation of magnetization and its relaxation at low temperature. Journal of Physical Chemistry B, 2006. 110(31): p. 15234-15243.
    17. Adnan, M., et al., Study of magnetic and dielectric properties of ZnFe2O4/CoCr2O4 nanocomposites produced using sol-gel and hydrothermal processes. Journal of Alloys and Compounds, 2021. 865: p. 8.
    18. Xia, A.L., et al., Cr3+ substituted spinel ZnFe2O4 ferrites obtained via a hydrothermal process: structural and magnetic properties. Journal of Materials Science-Materials in Electronics, 2021. 32(9): p. 12725-12731.
    19. Zhu, X.S., et al., A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: Structural and magnetic properties. Ceramics International, 2021. 47(11): p. 15173-15179.
    20. Thakur, P., et al., Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2021. 530: p. 20.
    21. Mathew, D.S. and R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal, 2007. 129(1-3): p. 51-65.
    22. Kosak, A., D. Makovec, and M. Drofenik, Microemulsion synthesis of MnZn-ferrite nanoparticles, in Progress in Advanced Materials and Processes, D.P. Uskokovic, S.K. Milonjic, and D.I. Rakovic, Editors. 2004, Trans Tech Publications Ltd: Zurich-Uetikon. p. 219-224.
    23. Wang, J., et al., Microemulsion processing of manganese zinc ferrites. Materials Letters, 1997. 30(2-3): p. 217-221.
    24. Ghimire, S.D., J. Lee,, Tetragonal-like distortion and enhanced magnetic anisotropy of the cubic spinel Fe3O4 film with a thin ZnFe2O4 capping layer. Thin Solid Films, 2020. 707: p. 7.
    25. Jian Ding , D.Z., Makoto Arita , Yoshifumi Ikoma , Kazuki Nakamura , Katsuhiko Saito , Qixin Guo, Growth and characterization of Fe3O4 films. Materials Research Bulletin, 2011.
    26. Yang, A., et al., Cation-disorder-enhanced magnetization in pulsed-laser-deposited CuFe2O4 films. Applied Physics Letters, 2005. 86(25): p. 3.
    27. Tiwari, S., R.J. Choudhary, and D.M. Phase, Effect of growth temperature on the structural and transport properties of magnetite thin films prepared by pulse laser deposition on single crystal Si substrate. Thin Solid Films, 2009. 517(11): p. 3253-3256.
    28. Zhang, Y.J., et al., Atomic layer deposition of void-free ZnFe2O4 thin films and their magnetic properties. Thin Solid Films, 2020. 709: p. 6.
    29. Pham, C.D., et al., Magnetic Properties of CoFe2O4 Thin Films Synthesized by Radical Enhanced Atomic Layer Deposition. Acs Applied Materials & Interfaces, 2017. 9(42): p. 36980-36988.
    30. C Jin, Q.Z., W B Mi, E Y Jiang and H L Bai, Tunable magnetic and electrical properties of polycrystalline and epitaxial NixFe3−xO4 thin films prepared by reactive co-sputtering. Applied Physics Letters, 2010.
    31. Fietzke, F. and O. Zywitzki, Structure and properties of magnetron-sputtered manganese ferrite films. Thin Solid Films, 2017. 644: p. 138-145.
    32. Sun, K., et al., Influence of substrate type on the property of nickle-zinc ferrite thin films. Ceramics International, 2016. 42(2): p. 3028-3032.
    33. Niizeki, T., et al., Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films. Aip Advances, 2015. 5(5): p. 6.
    34. Callister, D.G.R.W.D., Materials Science & Engineering 9/E. Wiley, 2014.
    35. K. H. J. Buschow, F.R.B., Physics of magnetism and magnetic materials. Springer, 2003.
    36. J.M.D.Coey, Magnetostatic energy and forces", in "Magnetism and magnetic material". Cambridge University Press., 2009: p. 50.
    37. S.Chikazumi, C.D.G., Exchange interaction, in "Physics of Ferromagnetism". Oxford University Press, 1997.
    38. Getzlaff, M., Fundamentals of magnetism. Springer, 2008.
    39. J. Stohr, H.C.S., Magnetism From Fundamentals to Nanoscale Dynamics. Springer, 2006.
    40. Makarov, A., Modeling of Emerging Resistive Switching Based Memory Cells. 2014.
    41. Gilbert, T.L., A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 2004. 40(6): p. 3443-3449.
    42. CHIKAZUMI, S., Physics of Ferromagnetism. Oxford University Press, USA, 2009.
    43. R.Valenzuela, Magnetic ceramics. Cambridge university press, 2005. 4.
    44. Smit, J., Magnetic properties of materials. McGraw-Hill Book Company, 1971: p. 22-23.
    45. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976. A32: p. 751-767.
    46. 田民波, 薄膜技術與薄膜材料. 五南, 2007.
    47. Ohring, M., Materials science of thin films. Elsevier, 2001.
    48. Lemire, C., et al., Reactive RF magnetron sputtering deposition of WO3 thin films. Sensors and Actuators B-Chemical, 2002. 84(1): p. 43-48.
    49. Bland, R.D., G.J. Kominiak, and D.M. Mattox, EFFECT OF ION-BOMBARDMENT DURING DEPOSITION ON THICK METAL AND CERAMIC DEPOSITS. Journal of Vacuum Science & Technology, 1974. 11(4): p. 671-674.
    50. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology, 1986. 4.
    51. Lubbe, M., et al., Identification of iron oxide phases in thin films grown on Al2O3(0001) by Raman spectroscopy and X-ray diffraction. Surface Science, 2010. 604(7-8): p. 679-685.
    52. Gasparov, L.V., et al., Infrared and Raman studies of the Verwey transition in magnetite. Physical Review B, 2000. 62(12): p. 7939-7944.
    53. Shebanova, O.N. and P. Lazor, Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. Journal of Raman Spectroscopy, 2003. 34(11): p. 845-852.
    54. Rossiter, P.L., The electrical resistivity of metals and alloys. 1991.
    55. Jonker, G.H., Analysis of the semiconducting properties of cobalt ferrite. Journal of Physics and Chemistry of Solids, 1959. 9(2): p. 165-175.
    56. B. D. Cullity, C.D.G., Introduction to Magnetic Materials. Wiley-IEEE Press, 2009.
    57. Kale, S., et al., Film thickness and temperature dependence of the magnetic properties of pulsed-laser-deposited Fe3O4 films on different substrates. Physical Review B, 2001. 64(20): p. 205413.
    58. Ehrhardt, H., S.J. Campbell, and M. Hofmann, Magnetism of the nanostructured spinel zinc ferrite. Scripta Materialia, 2003. 48(8): p. 1141-1146.
    59. Shim, J.H., et al., Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR. Physical Review B, 2006. 73(6): p. 064404.
    60. Choi, E.J., Y. Ahn, and K.-C. Song, Mössbauer study in zinc ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2006. 301(1): p. 171-174.
    61. Byrne, J.M., et al., Biosynthesis of Zinc Substituted Magnetite Nanoparticles with Enhanced Magnetic Properties. Advanced Functional Materials, 2014. 24(17): p. 2518-2529.
    62. Beji, Z., et al., Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chemistry of Materials, 2010. 22(19): p. 5420-5429.
    63. Chandan Upadhyay, H.C.V., S. Anand, Cation distribution in nanosized Ni–Zn ferrites. JOURNAL OF APPLIED PHYSICS, 2004.
    64. Tian, Q., et al., Aqueous Solution Preparation, Structure, and Magnetic Properties of Nano-Granular ZnxFe3−xO4 Ferrite Films. Nanoscale Research Letters, 2010. 5(9): p. 1518.
    65. Dash, J., et al., Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films. Journal of Applied Physics, 1999. 86(6): p. 3303-3311.
    66. Bohra, M., et al., Narrow Ferromagnetic Resonance Linewidth Polycrystalline Zn-Ferrite Thin Films. Ieee Transactions on Magnetics, 2011. 47(2): p. 345-348.

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE