簡易檢索 / 詳目顯示

研究生: 教富佳
Jiao, Fu-Jia
論文名稱: 冰凍肩病患之盂肱關節在前後方向關節鬆動術下的機械性質
Mechanical Properties of the Glenohumeral Joint during Anteroposterior Glide Mobilization in Patients with Adhesive Capsulitis
指導教授: 蔡一如
Tsai, Yi-Ju
共同指導教授: 徐阿田
Hsu, Ar-Tyan
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 粘黏性關節囊炎前後方向關節鬆動術負荷-位移曲線力學特性
外文關鍵詞: Adhesive capsulitis, anteroposterior glide mobilization, load-displacement curve, mechanical properties
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    背景和目的:粘黏性關節囊炎又名“冰凍肩”,是由於肩關節囊急性或者慢性發炎,其病理變化使得肩膀活動角度受限及活動時產生疼痛。關節鬆動術則以普遍的運用於冰凍肩的物理治療。負荷和位移曲線 (load-displacement curve) 可以客觀描述與評估肩關節在執行關節鬆動術時受力的程度,如關節骨頭的相對位移以及線性勁度(linear stiffness)等相關生物力學特性。過去有很多研究以新鮮大體樣本來取得負荷﹣位移曲線,以探究肩關節的力學特性。但是對於患有冰凍肩的病人在做各個方向的關節鬆動術時肩關節的力學特性的研究是非常少的。因此,本文的目的就是探究患有冰凍肩的病人,在接受前後方向的關節鬆動術時,利用機器人手臂取得負荷位移曲線來探究盂肱關節的力學特性。
    材料和方法:本實驗招募13名患有冰凍肩的受試者(平均年齡:58.46±5.36y/o)和16名健康的年齡相同的受試者(平均年齡:55.38±5.71y/o)。在垂直受試者肩胛骨平面的方向上,利用六軸機械手臂模擬盂肱關節前後向關節鬆動術。受試者仰躺在治療床上,手臂分別隨機放在外旋60度,正中姿勢以及內旋60度三個位置時,每個位置重複前後方向關節鬆動術5次,最大力量為7公斤。接下來分析機器人所測得負荷﹣位移曲線上面相應點和區域上的負荷,位移以及線性勁度等參數。運用重複量數二因子混合模型變異數分析( Mixed model 2-way ANOVA with repeated measures), 進一步討論冰凍肩以及關節位置對負荷,位移以及線性勁度的影響。
    結果:冰凍肩組其負荷﹣位移曲線在趾區(toe region)和力量在7 公斤時所對應的位移值在外旋以及在內旋位置時小於同齡正常人。冰凍肩組在達到T2點(趾區與線性彈性區之交點)所需的力量顯著小於正常組。在趾區和線性彈性區域內,冰凍肩組的剛性大於於正常組。在冰凍肩組,一直維持外轉相較於內轉的位移量較小,在趾區以及線性彈性區,剛性較大
    結論:冰凍肩的病人在接受前後方向的關節鬆動術治療時,在負荷﹣位移曲線上面位移較小,T2點力量較大,在趾區以及線性彈性區剛性較強。這是由於喙肱韌帶和肩袖間隙纖維囊變短變厚導致的。在外旋位置上所得到的位移量小於內旋位置,也說明肩關節在外旋位置時,做前後方向的關節鬆動術喙肱韌帶和肩袖間隙纖維囊為第一線的限制結構而不是一般所認定的後側關節囊。而手臂機器人是精準有信度的儀器,臨床上也可以將其應用在模擬物理治療技術以及客觀評估肩關節的物理特性。

    ABSTRACT
    Background and purpose: It is well known that patients with adhesive capsulitis suffer from pain and restricted ranges of motion (ROMs) of the glenohumeral joint. Load-displacement curve (LDC) is an objective method to describe the biomechanical properties of glenohumeral joint during mobilization. Most past cadaver studies reported the mechanical properties of the glenohumeral joint. But there are very few reports using quantitative measures to assess patients with adhesive capsulitis in various mobilization techniques applied at the glenohumeral joint. Therefore, the purpose of this study is to investigate the mechanical properties via LDC of the glenohumeral joint during anteroposterior glide mobilization in neutral and rotated positions in patients with adhesive capsulitis and their age-match controls.
    Materials and methods: The frozen shoulder group (FG) included 13 subjects (mean age: 58.46±5.36y/o) and 16 aged matched controls (mean age: 55.38±5.71y/o) in control group (CG) participated. A 6-DOF robotic arm was employed to perform anteroposterior glide mobilization on glenohumeral joint of all participants on the greater tubercle of the humerus in a direction perpendicular to the plane of scapula. The participant laid on a firm treatment table and received 5 repetitions of anteroposterior glide mobilization in the following positions of arm rotation in a random order: 60° external rotation (ER), natural position NP, and 60° internal rotation (IR). The peak force applied was 7kg. The relationship between force applied by the robot (load) and response of the tissue (displacement) was established and analyzed. The magnitudes of displacement, force and stiffness of the specific point and region on load-displacement cure were calculated. A two-way mixed model ANOVA with repeated measures was employed to assess main effects (group and position) for displacement, force and stiffness.
    Results: There was significant group difference at external rotation position (CG > FG, p<. 001) on Dspl_Toe. Position differences were found FG (NP>ER, t=-6.184, p<0.001, IR>ER, t=-4.953, p<0.001). There were significant group differences were found at ER (CG> FG, p=. 001) and IR (CG > FG, p=. 028) on Dspl_7 kg. There were significant group differences were found at ER (CG < FG, p= .015) and IR (CG < FG, p= .013) on force_Toe. There was significant group differences found at ER (CG < FG, P= .001) on stiff_T13. There were group differences found at ER (CG < FG, P< .001) and IR (CG < FG, P= 0.009). There were significant differences were found at ER (CG < FG, p< .001), NP (CG < FG, p= .032) and IR (CG < FG, P= .006) on stiff_LE.
    Conclusion: On the load displacement curve, the magnitudes of displacement at toe region and at 7 kg were smaller in patients with adhesive capsulitis than those of the age matched controls. Patients with adhesive capsulitis have greater force registered at toe region and stiffness at the toe region and the linear elastic region than those of the control group. The magnitudes of displacement collected with the arm positioned in external rotation were smaller than that of internal rotation. Patients with adhesive capsulitis have contracture and thickened coracohumeral ligament and rotator interval capsule. Therefore, physical therapists make arm positioned in external rotation during anteroposterior glide mobilization on the patients with adhesive capsulitis in the future.

    Contents 摘要 I ABSTRACT III 誌謝 V CHAPTER 1 INTRODUCTION 1 1.1 Adhesive Capsulitis 1 1.2 The Anatomy and Pathology 3 1.3 Joint Mobilization 6 1.3.1 The Convex-concave Rules 6 1.3.2 Circle Stability Concept 7 1.3.3 Related Literature of Position Effect 8 1.4 Mechanical Properties of Biological Materials 11 1.4.1 Related Literatures of Mechanical Properties Test 11 1.4.2 The Biomechanics of Mobilization 12 1.4.3 Load-displacement Curve 13 1.5 Motivations and Purpose 18 CHAPTER 2 MATERIALS and METHODS 20 2.1 Participants 20 2.2 Instruments 21 2.3 Procedures 23 2.4 Data Analysis 25 2.5 Outcome Measures 27 2.6 Statistical Analyses 28 CHAPTER 3 RESULTS 29 3.1 Basic Data 29 3.2 Displacement Parameters 31 3.3 Force Parameters 43 3.4 Stiffness Parameters 47 CHAPTER 4 DISCUSSION 54 4.1 Characteristics of the Participants 54 4.2 Effects of Adhesive Capsulitis on Displacements 56 4.3 Effects of Adhesive Capsulitis on Linear Stiffness 59 4.4 Joint Position Effects 61 4.5 Limitations 63 4.6 Clinical Relevance 64 CHAPTER 5 CONCLUSION 65 REFERENCES 66

    References
    Bach BR, Warren RF, Flynn WM, Kroll M, Wickiewiecz T. Arthrometric evaluation of knees that have a torn anterior cruciate ligament. J Bone Joint Surg Am.1990;72(9):1299-1306.
    Baslund B, Thomsen BS, Jensen EM. Frozen shoulder: current concepts. Scand J Rheumatol. 1990;19:321-325.
    Bigliani LU, Kelkar R, Flatow EL, Pollock RG, Mow VC. Glenohumeral Stability: Biomechanical Properties of Passive and Active Stabilizers. Clinical orthopaedics and related research. 1996;330:13-30.
    Blasier RB, Guldberg RE, Rothman ED. Anterior shoulder stability: Contributions of rotator cuff forces and the capsular ligaments in a cadaver model. J Shoulder Elbow Surg. 1992;1(3):140-150.
    Borsa PA, Sauers EL, Herling DE. Patterns of glenohumeral joint laxity and stiffness in healthy men and women. Medicine and science in sports and exercise. 2000;32(10):1685-1690.
    Borsa PA, Sauers EL, Herling DE. Glenohumeral stiffness response between men and women for anterior, posterior, and inferior translation. Journal of athletic training. 2002;37(3):240.
    Browe DP, Voycheck CA, McMahon PJ., Debski RE. Changes to the mechanical properties of the glenohumeral capsule during anterior dislocation. J Biomech. 2014;47(2):464-469.
    Bunker TD, Anthony PP. The pathology of frozen shoulder. A Dupuytren-like disease. J Bone Joint Surg Br. 1995;77(5): 677-683.
    Connell D, Padmanabhan R, Buchbinder R. Adhesive capsulitis: role of MR imaging in differential diagnosis. Eur Radiol. 2002;12:2100-6
    Cyriax J. Textbook of Orthopedic Medicine. 8th ed. London, UK: Baillère Tindall; 1982.
    Debski RE, Sakane M, LY S, Wong EK, Fu FH, Warner JJ. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. Journal of Shoulder and Elbow Surgery. 1999;8(4):324-329.
    Emig EW, Schweitzer ME, Karasick D, Lubowitz J. Adhesive capsulitis of the shoulder: MR diagnosis. AJR. 1995; 164:1457–1459.
    Felli L, Biglieni L, Fiore M, Coviello M, Borri R, Cutulo M. Functional study of glenohumeral ligaments. Journal of orthopaedic science. 2012;17(5): 634-637.
    Ferrari DA. Capsular ligaments of the shoulder anatomical and functional study of the anterior superior capsule. The American journal of sports medicine. 1990;18(1):20-24.
    Friedman RJ. Glenohumeral capsulorrhaphy. The shoulder: a balance of mobility and stability. American Academy of Orthopaedic Surgeons, Rosemont, IL, USA, Chapt. 1993;29:445-458.
    Goswami T. Human Musculoskeletal Biomechanics. Croatia: InTech; 2012.
    Hand GCR, Athanasou NA, Matthews T, Carr AJ. The pathology of frozen shoulder. Bone & Joint Journal. 2007;89(7):928-932.
    Harryman DT II, Lazarus MD. The stiff shoulder. In: Rockwood CA Jr, Matsen FA III, eds. The Shoulder. Philadelphia: WB Saunders; 2004:1121–1172. 

    Harryman DT, Sidles JA, Harris SL, Matsen FA. The role of the rotator interval capsule in passive motion and stability of the shoulder. J Bone Joint Surg Am. 1992;74(1): 53-66.
    Hertling D, Kessler RM. Management of common musculoskeletal disorders, physical therapy principles and methods. 3rd ed. Philadelphia: Lippincott; 1996.
    Ho KY, Hsu AT. Displacement of the head of humerus while performing "mobilization with movements" in glenohumeral joint: a cadaver study. Man Ther. 2009;14(2):160-166.
    Hsu AT, Ho L, Ho S, Hedman T. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: a fresh cadaver simulation. Arch Phys Med Rehabil. 2000;81(11):1511-1516.
    Hsu AT, Chiu JF, Chang JH. Biomechanical analysis of axial distraction mobilization of the glenohumeral joint--a cadaver study. Man Ther. 2009;14(4):381-386.
    Hsu AT, Hedman T, Chang JH, Vo C, Ho L, Ho S, Chang GL. Changes in abduction and rotation range of motion in response to simulated dorsal and ventral translational mobilization of the glenohumeral joint. Phys Ther. 2002;82(6):544-556.
    Johnson AJ, Godges JJ, Zimmerman GJ, Ounanian LL.The effect of anterior versus posterior glide joint mobilization on external rotation range of motion in patients with shoulder adhesive capsulitis. J Orthop Sports Phys Ther. 2007;37(3):88-99.
    Jung JY, Jee WH, Chun HJ, Kim YS, Chung YG, Kim JM. Adhesive capsulitis of the shoulder: evaluation with MR arthrography. Eur Radiol. 2006; 16:791–796.
    Kaltenborn F M et al. Manual Mobilization of the Joints: The Kaltenborn Method of Joint Examination and Treatment : Volume I, The Extremities.1999.
    Lee MH, Ahn JM, Muhle C, et al. Adhesive capsulitis of the shoulder: diagnosis using magnetic resonance arthrography, with arthroscopic findings as the standard. J Comput Assist Tomogr. 2003; 27:901–906.
    Lee S H, Yoon C, Chung S G, et al. Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect[J]. PloS one, 2015; 10(6): e0129398.
    Lefevre-Colau MM, Drape JL, Fayad F, et al. Magnetic resonance imaging of shoulders with idiopathic adhesive capsulitis: reliability of measures. Eur Radiol. 2005; 15:2415–2422.
    Lin HS, Liu YK, Adams KH. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J. Bone. Jt Surg. 1978;60A:41-55.
    Lin HT, Hsu AT, An KN, Chang Chien JR, Kuan TS, Chang GL. Reliability of stiffness measured in glenohumeral joint and its application to assess the effect of end-range mobilization in subjects with adhesive capsulitis. Man Ther. 2008;13(4):307-316.
    Lippitt S, Matsen F. Mechanisms of glenohumeral joint stability. Clinical orthopaedics and related research. 1993;291:20-28.
    Makhsous M, Lin F, Zhang LQ. Multi-axis passive and active stiffnesses of the glenohumeral joint. Clin Biomech (Bristol, Avon). 2004;19(2):107-115.
    Mao CY, Jaw WC, Cheng HC. Frozen shoulder: correlation between the response to physical therapy and follow-up shoulder arthrography. Arch Phys Med Rehabil. 1997;78:857-859.
    Markolf KL. Deformation of the thoracolumbar intervertebral joints in response to external loads. J. Bone. Jt Surg. 1972;54A:511-533
    Markolf KL, Graff-Radford ADRIAN, Amstutz HC. In vivo knee stability: A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am. 1978;60(5):664-674.
    Markolf KL, Amstutz HC. The Clinical Relevance of Instrumented Testing for ACL Insufficiency: Experience with the UCLA Clinical Knee Testing Apparatus*. Clinical orthopaedics and related research. 1987;223:198-207.
    McQuade KJ, Shelley I, Cvitkovic J. Patterns of stiffness during clinical examination of the glenohumeral joint. Clin Biomech (Bristol, Avon). 1999;14(9): 620-627.
    Mengiardi B, Pfirrmann CWA, Gerber C, et al. Frozen shoulder: MR arthrographic findings. Radiology. 2004; 233: 486-92.
    Neuschwander DC, Drez D, Paine RM, Young JC. Comparison of anterior laxity measurements in anterior cruciate deficient knees with two instrumented testing devices. Orthopedics. 1990;13(3): 299-302.
    Neviaser RJ, Neviaser TJ. The frozen shoulder. Diagnosis and management. Clin Orthop Relat Res. 1987;223: 59-64.
    O'Brien SJ, Schwartz RE, Warren RF, Torzilli PA: Capsular restraints to anterior/posterior motion of the shoulder. Orthop Trans. 1988;12:143.
    O'Brien SJ, Neves MC, Arnoczky SP, Rozbruch SR, DiCarlo EF, Warren RF, Schwartz R: The anatomy and histology of the inferior glenohumeral ligament complex of the shoulder. Am J Sports Med. 1990;18:449-456.
    Pal B, Anderson J, Dick WC, Griffiths ID. Limitation of joint mobility and shoulder capsulitis in insulin-and non-insulin-dependent diabetes mellitus. Br J Rheumatol. 1986;25:147-151.
    Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE. Southwick W0. Three-dimensional load-displacement curves due to forces on the cervical spine. J. orthop. Res. 1986;4:152-161.
    Petchprapa CN, Beltran LS, Jazrawi LM, Kwon YW, Babb JS, Recht MP. The rotator interval: a review of anatomy, function, and normal and abnormal MRI appearance. AJR Am J Roentgenol. 2010;195(3):567-576.
    Provenzano PP, Heisey D, Hayashi K, Lakes R, Vanderby R. Subfailure damage in ligament: a structural and cellular evaluation. Journal of Applied Physiology. 2002;92(1):362-371.
    Sauers EL, Borsa PA, Herling DE, Manzour WF, Stanley RD. Validity of an instrumented measurement technique for quantifying glenohumeral joint laxity and stiffness. J Athletic Training. 2001;36:S40.
    Schwartz RE, O'Brien SJ, Warren RF. Capsular restraints to anteriorposterior motion of the abducted shoulder. A biomechanical study. Orthop Trans. 1988;12:727.
    Shaffer B, Tibone JE, Kerlan RK. Frozen shoulder. A long-term follow-up. J Bone Joint Surg Am. 1992;74:738-746.
    Siegel LB, Cohen NJ, Gall EP. Adhesive capsulitis: a sticky issue. Am Fam Physician. 1999;59:1843-1852.
    Sofka CM, Ciavarra GA, Hannafin JA, Cordasco FA, Potter HG. Magnetic resonance imaging of adhesive capsulitis: correlation with clinical staging. HSS J. 2008; 4:164–169
    Tencer AF, Ahmed AM. The role of secondary variables in the measurement of the mechanical properties of the lumbar intervertebral joint. J. biomech. Engng. 1981;103:129-137.
    Terry GS, Hammon D, France P, Norwood LA: The stabilizing function of passive shoulder restraints. Am J Sports Med. 1991;19:26-34.
    Turkel SJ, Panio MW, Marshall JL, Girgis FG. Stabilizing mechanisms preventing anterior dislocation of the glenohumeral joint. J bone joint Surg Am. 1981;63(8):1208-1217.
    Virgin W. Experimental investigations into the physical properties of the intervertebral disc. J. Bone. Jt Surg. 1951;33B: 607-611.
    Wadsworth CT. Manual examination and treatment of the spine and extremities. Philadelphia: Williams and Wilkins; 1988.
    Warner JJ, Deng XH, Warren RF, Torzilli PA. Static capsuloligamentous restraints to superior-inferior translation of the glenohumeral joint. The American journal of sports medicine. 1992;20(6):675-685.
    Warren RF, Kornblatt IS, Morehand R. Static factors affecting posterior shoulder stability. Orthop Trans. 1984;82:39-93.

    Weishaupt D, Zanetti M, Tanner A, Gerber C, Hodler J. Lesions of the reflection pulley of the long biceps tendon: MR arthrographic findings. Invest Radiol. 1999; 34:463–469.
    Weiss JA, Gardiner JC, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading.Journal of biomechanics. 2002;35(7):943-950.
    Wolf EM, Cox WK. The external rotation test in the diagnosis of adhesive capsulitis. Orthopedics, 2010;33(5).
    Wu CH, Chen WS, Wang TG. Elasticity of the coracohumeral ligament in patients with adhesive capsulitis of the shoulder.Radiology. 2015;278(2):458-464.
    Yang HF, Tang KL, Chen W, Dong SW, Jin T, Gong JC, Xu JZ. An anatomic and histologic study of the coracohumeral ligament. Journal of Shoulder and Elbow Surgery. 2009;18(2):305-310.
    Zidel P, Ngai J, Raynor R, Hobbs G, Pugh J. Three-dimensional analysis of cervical spine motion segments by computer videophotogrammetry. Trans. Orthop. Res. Soc. 1985;10:330.

    無法下載圖示 校內:2021-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE