| 研究生: |
陳昱穎 Chen, Yu-Ying |
|---|---|
| 論文名稱: |
有機非揮發性記憶體中載子累積的機制研究 Study of the mechanism of charge accumulation in organic nonvolatile memories |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 烷基駢苯衍生物 、五環素 、有機非揮發性記憶體 |
| 外文關鍵詞: | N,N’-dioctadecy1-3,4,9,10-perylenetetracarboxylic, organic non-volatile memory, trapping layer |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用五苯環素與自行合成之烷基駢苯衍生物做為主動層,製作有機非揮發性記憶體元件,藉由改變不同種類的載子捕捉層,並且利用各種不同的薄膜特性分析探討表面形貌與電性方面的影響。
本研究共分為兩個主題,主題一利用兩種不同的結構:單層載子捕捉層Ps、C-pvp與同時具有修飾層與載子捕捉層雙層結構的PS + PS、C-PVP + PαMS、PS +PMMA,藉由上述兩種不同結構來控制記憶窗口變化,其中以C-PVP + PαMS可以得到最大的記憶窗口與元件穩定性,另外在製作有機反向器時雖然C-PVP+ PαMS有最大的記憶窗口但卻因p型電流較小使得n、p型電流無法匹配,導致Vs較無法得到Vs = 1/2 VDD,反倒是記憶窗口較小的PS + PS比較匹配,較適合作為反相器。
主題二利用三種PI作為有機記憶體元件的載子捕捉層,藉由元件電性與材料特性分析來探討結構與電性的影響,分別是DA7013、DA9000、DA9000A。在這三種PI中DA7013表現出優異的n型記憶體特性,在耐久度上也有優異的表現,而DA9000A不具有側鏈所以缺乏捕捉載子的能力,故不適合做為記憶體元件卻適合製作反相器,DA9000則有相
Pentacene and N,N’-dioctadecy1-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13H27) are used as active layers to fabricate organic non-volatile memory devices with various types of charge trapping layer. Several types of semiconductor film are used to determine the impact of surface morphology and electrical properties.
In the first part, a single-layer structure that has a trapping layer, Polystyrene (Ps), and cross-linked poly (4-vinylphenol) (C-PVP) and a double-layer structure that has a modification layer and a trapping layer, PS + PS, C-PVP + Poly (a-methylstyrene) (PαMS), and PS + polymethylmethac- 0.rylate (PMMA) are used. The memory window of the double–layer structure is much larger than that of the single-layer structure. C-PVP + PαMS provides the largest memory window and the best stability.
In the second part, three types of polyimide, namely DA7013, DA9000, and DA9000A, are used as a trapping layer to fabricate non-volatile memory devices. The main structures of DA9000 and DA9000A are the same, but DA9000A does not have a side chain and thus lacks the ability to capture carriers. DA9000A is thus unsuitable for a memory device. The opposite is true for DA9000. DA7013 exhibits an excellent n-type memory feature and durability.
[1] D. Kahng, and S. M Sze, “A floating gate and its application tomemory devices”, IEEE Trans. Electron Devices, 14, 629, 1967.
[2] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers”, Appl. Phys. Lett., 96, 033302, 2010.
[3] S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovi´c, “Performance comparison of different organic molecular floating-gate memories”, IEEE Trans. on Nanotechnology, 10, 594, 2011.
[4] J. D. Blauwe, “Nanocrystal nonvolatile memory fevices”, IEEE Trans. on Nanotechnology, 1, 72, 2002.
[5] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A novel nanowire channel poly-si tft functioning as transistor and nonvolatile sonos memory”, IEEE Electron Device Lett., 28, 809, 2007.
[6] N. Wang, L. Zhu, D. Wanga, M. Wanga, Z. Lin , H. Tang, “Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nano- particles for catalytic removal of organic pollutants with H2O2”, Ultra- sonics Sonochemistry, 17, 526, 2010.
[7] M. H. White, D. A. Adams, and J. Bu, “On the go with sonos”, Circuits and Devices Magazine, IEEE, 16, 22, 2000.
[8] J. Bu, and M. H. White, “Effects of two-step high temperature deuterium annealson sonos nonvolatile memory devices”, IEEE Electron Device Lett., 22, 17, 2001.
[9] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King, “FinFET sonos flash memory for embedded applications”, IEDM Tech. Dig., 609, 2003.
[10] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. B. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Y. Lu, “MA Be-sonos: A bandgap engineered sonos using metal gate and Al2O3 blocking layer to overcome erase saturation”, IEEE, 88, 2007.
[11] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part I: device design and fabrication”, IEEE Trans. on Electron Devices, 49, 1606, 2002.
[12] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices”, Appl. Phys. Lett., 79, 433, 2001.
[13] B. Eitan, P pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “Nrom: A novel localized trapping, 2-bit non-volatile memory cell”, IEEE Electron Device Lett., 21, 543, 2000.
[14] J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices”, IEEE Trans. on Nanotechnology, 1, 72, 2002.
[15] K. Das, M. N. Goswami, R. Mahapatra, G. S. Kar, H. N. Acharya, S.
Maikap, J. H. Lee, S. K. Ray, “Charge storage and photoluminescence characteristics of silicon oxide embedded Ge nanocrystal trilayer structures”, Appl. Phys. Lett., 84, 1386, 2004.
[16] T. H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “Design optimization of metal nanocrystal memory-Part I: nanocrystal array engineering”, IEEE Trans. Electron Devices, 53, 3095, 2006.
[17] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEEE trans. Electron Devices, 49, 1392, 2002.
[18] S. Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, C Kim, “Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications”, Appl. Phys. Lett., 86, 123110, 2005.
[19] J. J. Lee, and D. L. Kwong, “Metal nano-crystal memory with high-k tunneling barrier for imporved data retention”, IEEE Trans. Electron Devices, 52, 507, 2005.
[20] T. Y. Kim, N. M. Park, K. H. Kim, and G. Y. Sung, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., 85, 5355 , 2004.
[21] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “Synthesisand characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices ”, Appl. Phys. Lett., 79, 433, 2001.
[22] R. Waser, “Resistive non-volatile memory devices”, Microelectronic Engineering, 86, 1925, 2009.
[23] X. Liu, Z. Ji, Deyu Tu, L. Shang, J. Liu, M. Liu, C. Xie, “Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene- dioxythiophene): Polystyrenesulfonate thin film”, Organic Electronics, 10, 1191, 2009.
[24] M. Cölle, M. Büchel, D. M. de Leeuw, “Switching and filamentary conduction in non-volatile organic memories”, Organic Electronics, 7, 305, 2006.
[25] S. H. Kim, S. H. Lee, and J. Jang, “High-performance n-channel organic thin-film transistor for cmos circuits using electron-donating self- assembled layer”, IEEE Electron Device Lett., 31, 1044, 2010.
[26] J. H. Park, D. H. Lee, H. Kong, M. J. Park, I. H. Jung, C. E. Park, H. K. Shim, “Organic thin-film transistor properties and the structural relationships between various aromatic end-capped triisopropyl- silylethynyl anthracene derivatives”, Organic Electronics, 11, 820, 2010.
[27] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density and fill factor in polymer solar cells”, Adv. Mater., 23, 4636, 2011.
[28] L. Dou, J. You1, J. Yang, C. C. Chen, Y. He, S. Murase,T. Moriarty, K. Emery, G. Li, and Y.Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer”, Nature Photonics, 6, 180, 2012.
[29] C. H. Chang, H. C. Cheng, Yi. J. Lu, K. C. Tien, H. W. Lin, C. L. Lin, C. J. Yang, C. C. Wu, “Enhancing color gamut of white OLED displays by
using microcavity green pixels”, Organic Electronics, 11, 247, 2010.
[30] H. K. Kim, S. H. Cho, J. R. Oh, Y. H. Lee, J. H. Lee, J. G. Lee, S. K. Kim, Young-Il Park, J. W. Park, Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes”, Organic Electronics, 11, 137, 2010.
[31] L. P. MA, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett., 80, 2997, 2002.
[32] J. Oyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device”, Nat. Mater., 3, 918, 2004.
[33] S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulović, “Bulovic performance comparison of different organic molecular floating gate memories”, IEEE Trans. on Nanotechnology, 10, 594, 2011.
[34] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory”, Adv. Func. Mater., 18, 3678, 2008.
[35] L. Zhen, W. Guan, L. Shang, M. Liu, and G. Liu, “Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric”, Journal of Physics D: App. Phys., 41, 135111, 2008.
[36] W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, “Non-volatile organic memory applications enabled by In situ synthesis of gold nanoparticles in a self-assembled block copolymer”, Adv. Mater., 20, 2325, 2008.
[37] S. Wang, C. W. Leung, P. K. L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles”, Organic Electronics, 11, 990, 2010.
[38] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze and M. C. Petty, “A pentacene-based organic thin film memory transistor”, Appl. Phys. Lett., 94, 173302, 2009.
[39] B. L Yeh, Y H. Chen, L. Y. Chiu, J. W. Lin, W. Y. Chen, J. S.Chen, T. H. Chou, W. Y. Chou, F. C. Tang and, H. L. Cheng, “Organic nonvolatile memory based on low voltage organic thin film transistors with polymer gate electrets”, Journal of The Electrochemical Society, 158, 277, 2011.
[40] L. Shang, Z. Ji, H. Wang, Y. Chen, X. Liu, M. Han, and M. Liu, “Low-voltage multilevel memory based on organic thin-film transistor”, IEEE Electron Device Lett., 32, 1451, 2011.
[41] K. H. Lee, G. Lee, K. Lee, M. S. Oh, and Seongil Im, “Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer”, App. Phys. Lett., 94, 093304, 2009.
[42] R. C. Naber, B. de Boer, P. W. Blom, and D. M. de Leeuw, “Low -voltage polymer field-effect transistors for nonvolatile memories”, Appl. Phys. Lett., 87, 203509 , 2005.
[43] K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center”, Organic Electronics, 10, 48, 2009.
[44] S. J. Kim, and J. S. Lee, “Flexible organic transistor memory devices”, NANO Letters, 10, 2884, 2010.
[45] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-κ dielectric layers”, Appl. Phys. Lett., 93, 233302, 2008.
[46] L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. Hhung Chan, E. T. Kang, K. G. Neoh, “A flexible polymer memory device”, Organic Elec- tronics, 8, 401, 2007.
[47] S. J. Kim, J. M. Song, and J. S. Lee, “Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates”, J. Mater. Chem., 21, 14516, 2011.
[48] Y. S. Park, S. Chung, S. J. Kim, S. H. Lyu, J. W. Jang, S. K. Kwon, Y. Hong, and J. S. Lee, “High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis, triisopropylsilylethynyl pentacene transistors”, Appl. Phys. Lett., 96, 213107 , 2010.
[49] K. A. Mohamad, K. Yousuke, K. Uesugi and, H. Fukuda, “n-channel organic thin-film transistors based on naphthalene–Bis(dicarboximide) polymer for organic transistor memory using hole-acceptor layer”, Jpn. J. Appl. Phys., 50, 091603, 2011.
[50] S. M. Wang, C. W. Leung, and P. K. L. Chan, “Nonvolatile organic transistor-memory devices using various thicknesses of silver nanoparticle layers”, Appl. Phys. Lett., 97, 023511, 2010.
[51] X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Appl. Phys. Lett., 99, 043303, 2011.
[52] W. Y. Chou , B. L. Yeh, H. L. Cheng, B. Y. Sun, Y. C. Cheng, Y. S. Lin, S. J. Liu, F. C. Tang, C. C. Chang, “Organic complementary inverters with polyimide films as the surface modification of dielectrics”, Organic Electronics, 10, 1001, 2009.
[53] 蔡維勛,高分子聚合物於有機互補式場效電晶體的應用,國立成功大學碩士論文(2011)