簡易檢索 / 詳目顯示

研究生: 梁家祥
Liang, Chia-Hsiang
論文名稱: 多尺度太陽能電廠營運效率比較研究:規模效應與最佳化策略分析
A Comparative Study on Operational Efficiency of Multi-Scale Solar Power Plants: Analysis of Scale Effects and Optimization Strategies
指導教授: 顏盟峯
Yen, Meng-Feng
學位類別: 碩士
Master
系所名稱: 管理學院 - 高階管理碩士在職專班(EMBA)
Executive Master of Business Administration (EMBA)
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 94
中文關鍵詞: 太陽能電廠規模效應資料包絡分析TOPSIS分析方法三角測量
外文關鍵詞: Solar Power Plants, Scale Effects, Data Envelopment Analysis, TOPSIS Analysis, Methodological Triangulation
相關次數: 點閱:12下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討太陽能電廠規模與初期營運效率(前3年)的關係,以台灣三座不同規模電廠(分別為8.2MW、41.8MW和70.2MW)為研究對象。在台灣能源轉型背景下,太陽光電發展效率至關重要,但相關實證研究仍不足,特別是在台灣特殊地理環境與氣候條件下的規模效應分析。
    研究方法採用多案例比較設計,從技術效率、經濟效益與管理效能三維度評估規模效應。運用描述性統計、資料包絡分析(DEA)及技術偏好順序相似度接近理想解法(TOPSIS)等方法,透過方法三角測量策略增強小樣本研究的可靠性。
    主要發現顯示太陽能電廠初期營運的技術效率與規模呈非線性關係。大型電廠設備利用率最高(17.48%),但中型電廠在純技術效率上表現最佳(0.947)。經濟效益方面,大型電廠單位投資成本最低(36,550元/kWp),中型電廠反而最高(46,493元/kWp)。管理效能上,中型電廠人力效率最優(13.93 MW/人)。
    DEA與TOPSIS交叉驗證結果高度一致(相關係數0.951),均顯示中型電廠在前3年營運期間綜合表現最佳,大型電廠次之,小型電廠相對較低。敏感性分析確認了結果穩健性。
    本研究填補了太陽能電廠規模效應研究缺口,為產業規模選擇與營運最佳化提供科學依據。未來研究可擴大樣本、延長觀察期,並探討電廠生命週期不同階段的規模效應變化。

    This study examines the relationship between solar power plant scale and operational efficiency during the critical early operational phase (first 3 years). By analyzing three solar power plants of different scales (8.2MW, 41.8MW, and 70.2MW, respectively) in Taiwan managed by the same team, this research provides a controlled comparison for scale effect analysis.
    The study integrates Data Envelopment Analysis (DEA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodologies to analyze performance data across technical, economic, and management dimensions. Results reveal a non-linear relationship between scale and efficiency, with medium-scale plants (25-45MW) achieving optimal balance between technical performance and management complexity.
    Key findings show the medium-scale plant (41.8MW) demonstrated superior pure technical efficiency (0.947) and human resource efficiency (13.93 MW/person). In contrast, the large-scale plant (70.2MW) exhibited advantages in capacity factor (17.48%) and lower unit investment costs. Each scale category faces distinct challenges: large plants encounter coordination complexity, medium plants experience third-year efficiency decline, and small plants struggle with resource utilization inefficiency.
    This research provides evidence-based guidance for solar plant investment decisions, suggesting scale selection should align with specific objectives: technical efficiency maximization (>70MW), management flexibility (10- 30MW), or optimal risk-adjusted returns (35- 45MW).

    摘要i Abstractii 誌謝vi 目錄vii 表目錄ix 圖目錄x 第一章 緒論1 第一節 研究背景1 第二節 研究目的與問題1 第三節 研究對象介紹2 第四節 研究內容與流程6 第二章 文獻回顧7 第一節 太陽能產業與政策發展概況7 第二節 規模效應理論與多尺度比較研究8 第三節 文獻綜整與研究缺口16 第三章 研究方法與數據17 第一節 研究設計與框架17 第二節 數據來源與處理22 第三節 分析方法論27 第四章 研究結果與分析36 第一節 參數資料分析36 第二節 資料包絡分析(DEA)57 第三節 多準則決策分析結果65 第五章 結論與建議74 第一節 研究結論74 第二節 研究限制與未來研究建議75 參考文獻77

    一、英文文獻
    Akbaş, H. E., & Şentürk, M. (2021). Solar power plant efficiency analysis: A DEA approach. Renewable Energy, 178, 1290-1302.
    Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
    Baumol, W. J. (1959). Marginal cost and scale theory. American Economic Review, 49(2), 186-193.
    Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of-the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069.
    Button, K. J., & Weyman-Jones, T. G. (1992). X-efficiency and technical efficiency. Public Choice, 73(1), 83-104.
    Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429-444.
    Chen, F., & Lu, S. M. (2021). Analyzing the policy effectiveness and market trends of photovoltaic applications in Taiwan. Renewable Energy, 174, 1060-1073.
    Denzin, N. K. (1970). The research act: Methodological triangulation in social inquiry. Aldine.
    Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., & Ogliari, E. (2015). Performance analysis of a single-axis tracking PV system. IEEE Journal of Photovoltaics, 5(4), 1030-1035.
    Eke, R., & Demircan, H. (2013). Performance analysis of a multi-crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Conversion and Management, 65, 580-586.
    Filippini, M., & Hunt, L. C. (2011). Energy demand and energy efficiency in the OECD countries: A stochastic demand frontier approach. The Energy Journal, 32(2), 59-80.
    Fthenakis, V., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. Solar Energy, 85(8), 1609-1628.
    García-Cascales, M. S., Lamata, M. T., & Sánchez-Lozano, J. M. (2019). TOPSIS applications in energy system optimization. Energy Reports, 5, 870-882.
    Gupta, R., Schmidt, T., & Kumar, A. (2023). Scaling effects in renewable energy deployment: A global meta-analysis. Energy Policy, 172, 113271.
    Hernández-Moro, J., & Martínez-Duart, J. M. (2013). Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renewable and Sustainable Energy Reviews, 20, 119-132.
    IEEE Standards Association. (2022). IEEE 2848-2022: Standard for solar generation system performance metrics. Piscataway, NJ: IEEE.
    International Energy Agency (IEA). (2023). Global solar energy outlook 2023. Paris: OECD/IEA.
    Jordan, D. C., & Kurtz, S. R. (2013). Photovoltaic degradation rates—an analytical review. Progress in Photovoltaics: Research and Applications, 21(1), 12-29.
    Kengpol, A., et al. (2022). Comparative study of solar policies in Southeast Asia. Asia-Pacific Energy Research, 15(2), 112-130.
    Kumar, A., Singh, P., & Mishra, S. (2022). Multi-criteria decision-making for hybrid renewable energy systems using TOPSIS. Sustainable Energy Technologies and Assessments, 52, 102281.
    Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92, 883-896.
    Leibenstein, H. (1966). Allocative efficiency vs. "X-efficiency". The American Economic Review, 56(3), 392-415.
    Liou, H. M. (2015). Comparing feed-in tariff incentives in Taiwan and Germany. Renewable and Sustainable Energy Reviews, 50, 1021-1034.
    Müller, J. M., et al. (2020). Economies of scale in solar photovoltaic systems. Applied Energy, 264, 114742.
    National Renewable Energy Laboratory (NREL). (2023). Photovoltaic module efficiency trends. Technical Report NREL/TP-6A20-80077.
    Nguyen, T. H., et al. (2021). AI-driven SCADA systems for solar farm maintenance. IEEE Transactions on Industrial Informatics, 17(8), 5432-5441.
    Panzar, J. C., & Willig, R. D. (1977). Economies of scale and diseconomies of scope. Journal of Political Economy, 85(4), 741-771.
    Sadeghi, M., et al. (2020). TOPSIS-based site selection for wind-solar hybrid plants. Renewable and Sustainable Energy Reviews, 133, 110203.
    Spertino, F., & Corona, F. (2013). Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems. Renewable Energy, 60, 722-732.
    Sueyoshi, T., & Goto, M. (2014). DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations. Energy Economics, 44, 178-204.
    Wang, K. M., & Cheng, Y. J. (2020). The evolution of feed-in tariff policy in Taiwan. Energy Strategy Reviews, 29, 100485.
    Wang, Y., & Lee, H. S. (2022). Operational risks in early-stage solar projects. Energy Economics, 108, 105879.
    Zhou, P., Ang, B. W., & Poh, K. L. (2008). A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, 189(1), 1-18.
    二、中文文獻
    台灣能源局 & 再生能源產業協會. (2022). 台灣太陽光電發展白皮書. 台北:經濟部.
    林志華 (2021). 分散式太陽能儲能系統之經濟效益分析. 台灣電力學報, 34(4), 78-89.
    張勇 (2020). 中國西北地區太陽能電站效率研究. 太陽能學報, 41(6), 156-167.
    陳立 (2021). 模糊TOPSIS於台灣極端氣候適應策略評估. 台灣能源期刊, 28(3), 45-60.
    劉偉 (2023). 整合DEA與TOPSIS於太陽能電廠效能評估. 中國可再生能源學報, 41(1), 23-35.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE