| 研究生: |
侯育嘉 Hou, Yu-Chia |
|---|---|
| 論文名稱: |
構建單電子電晶體模型以完備神經動力學架構 Single-Electron Transistor Model of Neuronal Dynamics |
| 指導教授: |
張為民
Zhang, Wei-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 單電子電晶體 、量子點 、神經動力學 、離子通道 |
| 外文關鍵詞: | Single-electron transistor, Quantum dot, Neuronal dynamics, Ion channel |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在神經系統模擬的研究上,有尖峰響應模型(Spike Response Model)來描述多神經系統動力學,有霍吉金-赫胥黎模型(Hodgkin–Huxley model)來描述單神經元及離子通道開關的動態變化,有菲茨休-南雲模型(FitzHugh-Nagumo model)來分析神經元的狀態演化,卻沒有任何一個模型可以用來描述離子通道這個層次的動力學。
離子通道的動力學之所以重要,是因為影響整個神經傳遞最基本的因素就只有離子的變化而已。但是過去的模型都用電阻來模擬離子通道,因此無法探討微觀中每個離子的動力學。我們利用可控閘極電壓式單電子電晶體模型(Controllable gate voltage single-electron transistor model)來完整描述離子通道的行為。
在這個模型中,我們需要考慮時變的閘極電壓。因此我們以微擾理論給出閘極電壓與系統環境間耦合強度的關係。並利用非平衡格林函數(Non-Equilibrium Green's Function)給出系統的粒子數及電流隨時間的演化。
我們整合霍吉金-赫胥黎模型及可控閘極電壓式單電子電晶體模型做反向傳播(backpropagation),提出一個新的神經系統模型。利用可控閘極電壓式單電子電晶體模型模擬單離子通道算出的電流,加上霍吉金-赫胥黎模型給出單神經中離子通道開啟的數量,可以得到膜電位的變化。再修正霍吉金-赫胥黎模型所得到的膜電位誤差,做多次反向傳播後誤差將會收斂。最後我們再加入尖峰響應模型,考慮其他神經元的訊號以及動作電位後的閥值修正,即可得到完整的神經系統模型。
In neuronal dynamics studies, the spike response model is used to describe multiple neurons dynamics. The Hodgkin-Huxley model is used to describe the dynamics of single neuron and the total ion channel gates. The FitzHugh-Nagumo model is used to analyze the state evolution of single neuron. However, no model can be used to describe the dynamics of single ion channel.
The dynamics of a single ion channel is important, because the most fundamental factor affecting the entire neuronal dynamics is the dynamics of every single ion. But in the past, all models used a resistor to replace a single ion channel. So, the dynamics of single ion in the microscopic cannot be explored. And so now, we use a gate voltage controllable single-electron transistor model to describe the dynamics of the single ion channel.
In this model, we need to consider the time-dependent gate voltage. Therefore, we use the perturbation theory to give the relationship between the gate voltage and the coupling strength between the system and environment. And the non-equilibrium Green's function is used to give the evolution of the number of particles and the current over time.
We combine the Hodgkin-Huxley model with a gate voltage controllable single-electron transistor model. Then use backpropagation approach to reduce the error. Finally, we propose a new complete neuronal dynamics algorithm model.
[1] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. Darnell, Molecular Cell Biology (4th edition), Freeman & Co., New York (2000).
[2] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. Lamantia and J. O. Mcnamara, Neurosciense (3rd edition), Sinauer Associates Inc., Sunderland, Massachusetts U.S.A. (2004).
[3] W. Gerstner, W. M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics, Cambridge Univ., Cambridge (2014).
[4] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in neuron, The Journal of physiology, 117(4), 500–544 (1952).
[5] Z. F. Mainen, J. Joerges, J. R. Huguenard and T. J. Sejnowski, A model of spike initiation in neocortical pyramidal neurons, Neuron 15 (6), pp. 1427–1439 (1995).
[6] J. R. Huguenard, O. P. Hamill and D. A. Prince, Developmental changes in na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component, Journal of Neurophysiology 59 (3), pp. 778–795 (1988).
[7] O. P. Hamill, J. R. Huguenard and D. A. Prince, Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex, Cerebral Cortex 1 (1), pp. 48–61 (1991).
[8] Y. Y. Vilin, C. H. Peters and P. C. Ruben, Acidosis differentially modulates inactivation in Nav1.2, Nav1.4, and Nav1.5 channels, Frontiers in Pharmacology, 3 JUN(June), 1–21 (2012).
[9] R. FitzHugh, Impulses and Physiological States in Theoretical Models of Neuron Membrane, Biophysical Journal, 1(6), 445–466 (1961).
[10] W. Gerstner and W. M. Kistler, Spiking Neuron Models, Physical Review E - Statistical, Nonlinear and Soft Matter Physics, 66(4 Pt 1), 041903 (2002).
[11] S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee and A. M. Ionescu, Analytical modelling of single-electron transistor for hybrid CMOS-SET analog IC design, IEEE Transactions on Electron Devices, 51(11), 1772–1782 (2004).
[12] K. Uchida, K. Matsuzawa, J. Koga, R. Ohba, S. I. Takagi and A. Toriumi, Analytical single-electron transistor (SET) model for design and analysis of realistic SET circuits, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 39(4 B), 2321–2324 (2000).
[13] D. V. Averin and K. K. Likharev, Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions, Journal of Low Temperature Physics, 62(3–4), 345–373 (1986).
[14] T. Dittrich, P. Hanggi, G. Ingold, B. Kramer and G. Schon, Quantum Transport and Dissipation, 344(6187), 941–942 (2014).
[15] A. M. Ionescu, S. Mahapatra and V. Pott, Hybrid SETMOS architecture with Coulomb Blockade oscillations and high current drive, IEEE Electron Device Letters, 25(6), 411–413 (2004).
[16] S. Mukherjee, T. S. Delwar, A. Jana and S. K. Sarkar, Hybrid single-electron transistor based low power consuming 4-bit parallel adder/subtractor circuit in 65 nanometer technology, 2014 17th International Conference on Computer and Information Technology, ICCIT 2014, 136–140 (2014).
[17] K. Uchida, Single-Electron transistors and circuits for future ubiquitous computing applications, ESSDERC 2006 - Proceedings of the 36th European Solid-State Device Research Conference, 2006-January, 17–20 (2006).
[18] C. Zhu, Z. Gu, R. P. Dick, L. Shang and R. G. Knobel, Characterization of single-electron tunneling transistors for designing low-power embedded systems, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(5), 646–659 (2009).
[19] T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters, 59(1), 109–112 (2009)
[20] S. B. Field and I. Smith, Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas, Physical Review Letters, 62(5), 583 (1989).
[21] K. Nakazato and H. Ahmed, Single-electron devices. Microelectronic Engineering, 658(1–4), 87–121 (1996).
[22] D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth and A. P. Alivisatos, An approach to electrical studies of single nanocrystals. Applied Physics Letters, 68(18), 2574–2576 (1996).
[23] K. Matsumoto, M. Ishii, K. Segawa and Y. Oka, Room temperature operation of a single-electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system, Applied Physics Letters, 68(1), 34–36 (1996).
[24] V. Ray, R. Subramanian, P. Bhadrachalam, L. C. Ma, C. U. Kim and S. J. Koh, CMOS-compatible fabrication of room-temperature single-electron devices, Nature Nanotechnology, 3(10), 603–608 (2008).
[25] E. Amat, J. Bausells and F. Perez-Murano, Exploring the Influence of Variability on Single-Electron Transistors into SET-Based Circuits, IEEE Transactions on Electron Devices, 64(12), 5172–5180 (2017).
[26] C. Y. Lin and W. M. Zhang, Single-electron turnstile pumping with high frequencies. Applied Physics Letters, 99(7) (2011).
[27] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu and F. Nori, General non-Markovian dynamics of open quantum systems, Physical Review Letters, 109(17), 1–5 (2012).
[28] J. Jin, M. W. Y. Tu, W. M. Zhang and J. Yan, Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional, New Journal of Physics, 12, 0–30 (2010).
[29] M. W. Y. Tu and W. M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Physical Review B, 78(23) (2008).
[30] P. Y. Yang and W. M. Zhang, Master equation approach to transient quantum transport in nanostructures, Frontiers of Physics, 12(4) (2017).
[31] J. Maciejko, J. Wang and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Physical Review B, 74(8), 1–23 (2006).
[32] O. Ekeberg, P. Walln, A. Lansner , H. TrIvn and L. Brodin, A computer based model for realistic simulations of neural networks, Biological Cybernetics, 90, 81–90 (1991).
[33] T. B. Kepler, L. F. Abbott and E. Marder, Reduction of conductance-based neuron models, Biol. Cybern. 66, pp. 381–387 (1992).
[34] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating neuron axon, Proceedings of the IRE, 50, 2061-2070. (1962).
[35] S. Mensi, R. Naud, M. Avermann, C. C. H. Petersen and W. Gerstner, Parameter extraction and classification of three neuron types reveals two different adaptation mechanisms, J. Neurophys. 107, pp. 1756–1775 (2012).
[36] R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J. 5, pp. 173–194 (1965).
[37] R. B. Stein, Some models of neuronal variability, Biophys. J. 7, pp. 37–68 (1967).