簡易檢索 / 詳目顯示

研究生: 王俊仁
Wang, Jeun-Len
論文名稱: 金/錫或Au/ACF結合影像感測器有限元素力學分析法之研究
Methodology of FE Mechanical Analysis for Image Sensor with Au/Sn or Au/ACF Bonding
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 95
中文關鍵詞: 非等向性導電性薄膜晶粒-玻璃接合技術潛變有限元素分析
外文關鍵詞: anisotropic conductive films, chip on glass, creep, finite element analysis
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文針對COG(Chip On Glass)元件中與金凸塊接合之材料錫和ACF(Anisotropic conductive film),模擬其接合後於降溫過程中之力學分析。並利用ANSYS有限元素分析軟體來分析降溫後之殘留應力與應變。
      
      首先針對接合材料錫與ACF選擇相符之材料性質,錫為彈塑性兼潛變行為之材料;ACF為黏彈性材料,之後對其性質求出所需之材料參數。接著便是利用ANSYS有限元素軟體模擬金凸塊接合後有由高溫降至常溫的過程。

      最後將ANSYS分析所得之結果進行評估,探討結構中的應力應變分佈及對應之變形,並改變凸塊與結合材料的尺寸,再進行相同的模擬分析。討論改變尺寸後對應力與應變的影響,並討論純錫加入潛變分析後之影響。

      此次利用ANSYS有限元素軟體模擬金凸塊接合過程,主要在尋找適當的分析材料並建構一套求出材料參數的方法,以及建立完整模型與完整的分析流程。並對未來找出COG各材料選擇及較佳的尺寸作準備。

      This paper describes Tin and ACF (Anisotropic conductive film) of interconnection material with gold bump in COG (Chip On Glass) components, modeling its mechanics analysis in the course of lowering the temperature after bonding. And use ANSYS finite element analysis software to analyze the residual stress and strain after lowering the temperature.

      First, choose the materials properties that conforms to Tin and ACF in the interconnection material, the Tin is the material of plasticity and concurrently creep behavior; and the ACF is the material of viscoelasticity. Later look for the necessary material parameter for its materials properties. There is course that using ANSYS finite element analysis software to model the high temperature drops to the room temperature.

      Final, estimating the result that ANSYS analyses carry out. Probed into the distribution of stress and strain in the structure and corresponding to its displacement, and change size of bump and bonding material, carry on the same simulation analysis again. Discuss the influence of the stress and strain after changing sizes and the pure Tin joins the creep effects.

    摘要…………………………………………………………………………I 英文摘要……………………………………………………………………II 誌謝........................................................III 目錄…………………………………………………………………………IV 表目錄……………………………………………………………………VIII 圖目錄……………………………………………………………………X 第一章 緒論…………………………………………………………………1 1-1 前言………………………………………………………………1 1-2 研究動機與目的…………………………………………………1 1-3 文獻回顧………………………………………………………2 1-4 研究方法…………………………………………………………3 1-5 章節提要…………………………………………………………4 第二章 LCD驅動IC之封裝簡介與ACF概論………………………………5 2-1 驅動IC之封裝簡介………………………………………………5 2-1-1 TAB……………………………………………………………5 2-1-2 共晶接合……………………………………………………6 2-2 ACF概論……………………………………………………………6 2-2-1 ACF材料技術…………………………………………………7 第三章 相關力學理論分析………………………………………………10 3-1 塑性理論………………………………………………………10 3-1-1 降服面……………………………………………………10 3-1-2 初始降服面………………………………………………10 3-1-3 von Mises Yield Condition……………………………11 3-1-4 Tresca Yield Condition…………………………………12 3-1-5 Subsequent Yield Surface…………………………………12 3-1-6 Isotropic Hardening 計算方法………………………13 3-2 潛變理論…………………………………………………………13 3-3 黏彈性理論………………………………………………………16 第四章 各理論中材料參數特性之探討與應用…………………………24 4-1 各理論中材料參數特性之探討與應用…………………………24 4-1-1 純錫應力-應變-溫度曲線………………………………24 4-2 純錫的潛變材料參數……………………………………………28 4-3 ACF的黏彈材料參數………………………………………………30 4-3-1 黏彈性剪力鬆弛模數之探討………………………………31 4-3-2 黏彈性材料Reduced Time…………………………………32 第五章 金凸塊結合技術於ANSYS軟體之力學分析與結果評估…………51 5-1 有限元素模型建立………………………………………………51 5-1-1 元素型態……………………………………………………52 5-1-2 材料參數……………………………………………………52 5-1-3 網格建立……………………………………………………54 5-1-4 負載與邊界條件……………………………………………55 5-2 ANSYS有限元素分析………………………………………………55 5-2-1 前處理……………………………………………………55 5-2-2 運算………………………………………………………56 5-2-3後處理………………………………………………………56 5-3 分析結果與評估…………………………………………………56 5-3-1 金-錫-金接合分析………………………………………56 5-3-1-1 各界面應力分佈情形…………………………………56 5-3-1-2 不同尺寸下之殘留應力大小…………………………57 5-3-1-3 純錫材料中的應力-應變分佈………………………58 5-3-2 金-ACF-金接合分析………………………………………59 5-3-2-1 各界面應力分佈情形…………………………………59 5-3-2-2 不同尺寸下之殘留應力大……………………………59 5-3-3 探討時間對應力與應變之影響……………………………60 5-3-3-1 金錫接合狀況下………………………………………60 5-3-3-2 金ACF接合狀況下……………………………………61 第六章 結論與未來方向…………………………………………………91 參考文獻……………………………………………………………………93

    [1] Yim, M. J., and Paik, K. W., “Design and Understanding of Anisotropic Conductive Films (ACF’s) for LCD Packaging,” IEEE Transactions on Components Packaging and Manufacturing Technology-Part A, Vol.21, No.2, pp.226-234, 1988.

    [2] Dudek, R., Meinel, S., Schubert, A., Michel, B., Dorfmuller, L., Knoll, P. M., and Baumbach, J., “Flow Characterization and Thermo-Mechanical Response of Anisotropic Conductive Films,” IEEE Transactions on Components and Packaging Technology, Vol.22, No.2, pp177-185, 1999.

    [3] Yim, M. J., Jeon, Y. D. and Paik, K. W., “Reduced Thermal Strain in Flip Chip Assembly on Organic Substrate Using Low CTE Anisotropic Conductive Film,” IEEE Transaction on Electronics Packaging Manufacturing, Vol.23, No.2, pp.171-176, 2000.

    [4] Chiriac, V. A., and Lee, T-Y. T., “Transient Thermal Analysis of an ACF Package Assembly Process,” IEEE Transactions on Components and Packaging Technology, Vol.24, No.4, pp.673-681, 2001.

    [5] Yin, C. Y., Lu, H., Bailey, C., and Chan, Y. C. “Experimental and Modeling Analysis of the Reliability of the Anisotropic Conductive Films,” Electronic Components and Technology Conference, pp.698-702, 2003

    [6] 沈更新, “LCD驅動IC之封裝與現況,” 電子與材料, 14期, 2002.

    [7] 陳凱琪, 黃淑禎, 李巡天, “異方性導電膠模材料(ACF)及非導電性絕緣接合材料(NCA)技術,” 工業材料, 200期, 2003.

    [8] Shames, I. H., and Cozzarelli, F. A., “Elastic and Inelastic Stress Analysis,” Washington DC, Taylor and Francis, 1997.

    [9] ANSYS Menu, “Structures with Material Nonlinearities,” ANSYS Theory Reference 8.0, Ch.4, 2003.

    [10] 林佑信, “智慧卡於循環負載下黏彈力學分析,” 國立成功大學工程科學系, 中華民國九十年六月.

    [11] King, J. A., editor; associate editors, Julia F. et al., “Materials Handbook for Hybrid Microelectronics,” Boston: Artech House, 1988.

    [12] Shames, I. H., and Cozzarelli, F. A., “Elastic and Inelastic Stress Analysis,” Washington DC, Taylor and Francis, 1997.

    [13] Valanis, K. C., and Lee C. F., “Deformation Kinematics Theory of Steady-State Creep in Metal,” Int. J. Solid and Structure, Vol.17, pp.589-604, 1981.

    [14] Song, H. G. Morris, J. W. and Hua, F., “Anomalous Creep in Sn-Rich Solder Joints,” Materials Transaction, Vol.43, No.8, pp. 1847-1853, 2002.

    [15] 鍾君勵, “含鉛/無鉛銲球變形動力學穩態潛變分析,” 國立成功大學工程科學系, 中華民國九十三年六月.

    [16] O’Brien, D. J., O., Mather, P. T., and White, S. R., “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of composite materials, Vol.35, No.10, pp.883-904, 2001

    [17] Aklonis, J. J., MacKnight, W. J., and Silen, M., “Introduction to Polymer Viscoelasticity,” John Wiley & Sons, Inc., 1972.

    [18] 大塚寬治, 宇佐美保, “半導體封裝工程,” 郭嘉龍編譯, 全華科技股份有限公司, 1999.

    [19] 康淵, 陳信吉, “ANSYS入門,” 全華科技圖書股份有限公司,2002.

    [20] Pecht, M. G., “Electronic Packaging Materials and Their Properties,” CRC Press LLC, 1999.

    [21] ANSYS Menu, “Element Library,” ANSYS Element Reference 8.0, Ch4, 2003.

    [22] 朱順源, “TAB銅內引腳強度之力學模擬分析,” 國立成功大學工程科學系, 中華民國九十一年六月.

    [23] ANSYS Menu, “Viscoelastic Material Constants,” ANSYS Element Reference 8.0, Ch2, 2003.

    [24] King, J. A., editor; associate editors, Freer, J., et al., “Materials Handbook for Hybrid Microelectronics,” Boston: Artech House, 1988.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE