簡易檢索 / 詳目顯示

研究生: 郭宏揚
Kuo, Hong-Yang
論文名稱: 磁電複合材料之時間相依行為的數學建模
Mathematical modeling of time-dependent behavior of magnetostrictive-piezoelectric composites
指導教授: 林建宏
Lin, Chien-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 53
中文關鍵詞: 磁電複合材料瞬態響應微觀力學預測非線性行為
外文關鍵詞: magnetoelectric composites, time-dependent response, micromechanical prediction, nonlinear behavior
相關次數: 點閱:148下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了磁電複合材料的有效非線性和時間相依的磁電行為。磁電耦合響應是由磁致伸縮相和壓電相之間的相互作用引起的。根據複合材料的結構,耦合可以通過應變介導或電荷介導的效應發生。特別關注磁電複合材料中的柔性壓電陶瓷和壓電聚合物,觀察到這些複合材料的響應隨時間呈現的黏彈性行為。為了預測磁電複合材料的有效響應,採用了簡化的unit-cell微觀力學模型。將微觀結構表示為立方體subcells的週期陣列,通過分析代表性體積元素的行為來表徵宏觀行為。使用非線性和時間相依的本構方程,需要應用增量形式將非線性關係線性化。為了驗證數學預測,與現有文獻中的實驗數據進行了比較。所提出的數學模型涵蓋了關於粒子增強和纖維增強磁電複合材料的全面的參數研究。這些研究調查了材料非線性、體積分率、磁場加載速率、施加預應力和施加磁場方向的影響。這些參數研究有助於了解磁電複合材料,特別強調了柔性壓電材料的作用以及其對時間相依響應的影響。研究結果對於設計和工程磁電複合材料具有實際意義,可以實現其性能的定制和優化。

    This study investigates the effective nonlinear and time-dependent magnetoelectric behavior of magnetoelectric composites. The magnetoelectric coupling response arises from the interaction between the magnetostrictive and piezoelectric phases. Depending on the composite architecture, the coupling can occur through strain-mediated or charge-mediated effects. Special attention is given to flexible piezoelectric ceramics and piezoelectric polymers in magnetoelectric composites. It is observed that the response of these composites can exhibit viscoelastic behavior over time. To predict the effective response of magnetoelectric composites, a simplified unit-cell micromechanical model is employed. The microstructure is represented as a periodic array of cubic subcells, enabling the characterization of macroscopic behavior by analyzing representative unit cells. Nonlinear and time-dependent constitutive equations are used, requiring the application of incremental formulations to linearize the nonlinear relations. To validate the mathematical predictions, experimental data available in the literature are compared. The proposed mathematical model encompasses a comprehensive set of parametric studies on particle-reinforced and fiber-reinforced magnetoelectric composites. These studies investigate the influence of material nonlinearity, constituent volume fraction, magnetic field loading rate, applied prestress, and applied magnetic field direction. The parametric studies contribute to the understanding of magnetoelectric composites, particularly emphasizing the role of the soft piezoelectric material and its impact on time-dependent responses. The findings have practical implications for the design and engineering of magnetoelectric composites, allowing for the tailoring and optimization of their properties.

    Abstract i 摘要 ii Acknowledgement iii Table of contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 3 1.2.1 Magnetostrictive material 3 1.2.2 Soft piezoelectric material 6 1.2.3 Magnetoelectric material 7 1.2.4 Micromechanical modeling 8 1.3 Research objective 10 Chapter 2 Constitutive equations 11 2.1 Nonlinear constitutive laws for magnetostrictive materials 11 2.2 Constitutive law for piezoelectric materials 14 2.3 Incremental formulation 18 Chapter 3 Micromechanics model 22 3.1 Simplified unit-cell model 22 Chapter 4 Results and discussion 27 4.1 Experimental validation 27 4.2 Parameter studies 31 Chapter 5 Conclusion 41 Chapter 6 Future work 43 Appendix 44 Reference 51

    Astrov, D. (1960). "The magnetoelectric effect in antiferromagnetics." Sov. Phys. JETP 11(3): 708-709.
    Atulasimha, J. and A. B. Flatau (2011). "A review of magnetostrictive iron–gallium alloys." Smart Materials and Structures 20(4): 043001.
    Brito-Pereira, R., C. Ribeiro, S. Lanceros-Mendez and P. Martins (2017). "Magnetoelectric response on Terfenol-D/ P(VDF-TrFE) two-phase composites." Composites Part B: Engineering 120: 97-102.
    Carman, G. P. and M. Mitrovic (1995). "Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems." Journal of intelligent material systems and structures 6(5): 673-683.
    Chakraborty, S., S. K. Mandal and B. Saha (2019). "Magneto-optic and magneto-electric effects in poly(vinylidene fluoride)- Zn0.2Co0.8Fe2O4 nanocomposite organic flexible film." Ceramics International 45(12): 14851-14858.
    Clark, A., B. DeSavage and R. Bozorth (1965). "Anomalous thermal expansion and magnetostriction of single-crystal dysprosium." Physical Review 138(1A): A216.
    Deng, Z. and M. J. Dapino (2017). "Review of magnetostrictive vibration energy harvesters." Smart Materials and Structures 26(10): 103001.
    Eshelby, J. D. (1957). "The determination of the elastic field of an ellipsoidal inclusion, and related problems." Proceedings of the royal society of London. Series A. Mathematical and physical sciences 241(1226): 376-396.
    Gao, X., Y. Pei and D. Fang (2010). "Experimental study on magneto-thermo-mechanical behaviors of Terfenol-D." Journal of Solid Mechanics and Materials Engineering 4(6): 652-657.
    Haj-Ali, R. M. and A. H. Muliana (2003). "A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials." International Journal of Solids and Structures 40(5): 1037-1057.
    Haj-Ali, R. M. and A. H. Muliana (2004). "A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures." International Journal of Solids and Structures 41(13): 3461-3490.
    Hill, R. (1965). "A self-consistent mechanics of composite materials." Journal of the Mechanics and Physics of Solids 13(4): 213-222.
    Huang, J. H., Y.-H. Chiu and H.-K. Liu (1998). "Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions." Journal of Applied Physics 83(10): 5364-5370.
    52
    Jiles, D. and J. Thoelke (1995). "Magnetization and magnetostriction in terbium–dysprosium–iron alloys." physica status solidi (a) 147(2): 535-551.
    Khan, K. A., A. H. Muliana, H. B. Atitallah and Z. Ounaies (2016). "Time-dependent and energy dissipation effects on the electro-mechanical response of PZTs." Mechanics of Materials 102: 74-89.
    Kim, J.-Y. (2011). "Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites." International Journal of Engineering Science 49(9): 1001-1018.
    Lin, C.-h. and Y.-Z. Lin (2021). "Nonlinear magnetoelectric coupling in magnetostrictive-piezoelectric composites." Composite Structures 276.
    Lin, C.-h. and F.-Y. Liu (2022). "Effective time-dependent behavior of three-phase polymer matrix smart composites." Composite Structures 289.
    Lin, C.-H. and A. Muliana (2013). "Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites." Acta Mechanica 224: 1471-1492.
    Lin, C.-H. and A. Muliana (2014). "Micromechanical models for the effective time-dependent and nonlinear electromechanical responses of piezoelectric composites." Journal of Intelligent Material Systems and Structures 25(11): 1306-1322.
    Lin, C.-H. and A. Muliana (2015). "Nonlinear electro-mechanical responses of functionally graded piezoelectric beams." Composites Part B: Engineering 72: 53-64.
    Lin, C.-H. and A. Muliana (2016). "Nonlinear and rate-dependent hysteretic responses of active hybrid composites." Materials Sciences and Applications 7(01): 51.
    Liu, W., F. Zhang, Y. Yan, C. Zhang, H. Zhao, B. C. Heng, Y. Huang, Y. Shen, J. Zhang, L. Chen, X. Wen and X. Deng (2021). "Remote Tuning of Built-In Magnetoelectric Microenvironment to Promote Bone Regeneration by Modulating Cellular Exposure to Arginylglycylaspartic Acid Peptide." Advanced Functional Materials 31(6).
    Lou, Y. C. and R. A. Schapery (1971). "Viscoelastic characterization of a nonlinear fiber-reinforced plastic." Journal of Composite Materials 5(2): 208-234.
    Mech, R. and J. Kaleta (2017). "Influence of Terfenol-D Powder Volume Fraction in Epoxy Matirx Composites on their Magnetomechanical Properies." Acta Mechanica et Automatica 11(3): 233-236.
    Nan, C.-W. (1994). "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases." Physical Review B 50(9): 6082.
    53
    Rado, G. and V. Folen (1961). "Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains." Physical review letters 7(8): 310.
    Shahab, S., S. Zhao and A. Erturk (2018). "Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting." Energy Technology 6(5): 935-942.
    Shen, K.-J. and C.-h. Lin (2021). "Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites." Acta Mechanica 232(3): 983-1003.
    Shu, Y., M. Lin and K. Wu (2004). "Micromagnetic modeling of magnetostrictive materials under intrinsic stress." Mechanics of materials 36(10): 975-997.
    Silva, M., P. Martins, A. Lasheras, J. Gutiérrez, J. Barandiarán and S. Lanceros-Mendez (2015). "Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites." Journal of Magnetism and Magnetic Materials 377: 29-33.
    Tang, B., J. Zhuang, L. Wang, B. Zhang, S. Lin, F. Jia, L. Dong, Q. Wang, K. Cheng and W. Weng (2018). "Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation." ACS Applied Materials and Interfaces 10(9): 7841-7851.
    Van den Boomgaard, J., D. Terrell, R. Born and H. Giller (1974). "An in situ grown eutectic magnetoelectric composite material: Part I Composition and unidirectional solidification." Journal of Materials Science 9: 1705-1709.
    Wang, Y. and G. J. Weng (2016). "On Eshelby's S-tensor under various magneto-electro-elastic constitutive settings, and its application to multiferroic composites." Journal of Micromechanics and Molecular Physics 1(03n04): 1640002.
    Wu, Z., L. Bian, J. Zhang and X. Wang (2016). "Magnetoelectric effect for rotational parameters detection." IEEE Transactions on Magnetics 52(7): 1-4.
    Yang, H., G. Zhang and Y. Lin (2015). "Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites." Journal of Alloys and Compounds 644: 390-397.
    Zhan, Y.-S. and C.-h. Lin (2020). "A Constitutive Model of Coupled Magneto-thermo-mechanical Hysteresis Behavior for Giant Magnetostrictive Materials." Mechanics of Materials 148.
    Zhan, Y.-S. and C.-h. Lin (2021). "Micromechanics-based constitutive modeling of magnetostrictive 13 and 03 composites." Composite Structures 260.
    Zhou, D. and M. Kamlah (2006). "Room-temperature creep of soft PZT under static electrical and compressive stress loading." Acta Materialia 54(5): 1389-1396.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE