簡易檢索 / 詳目顯示

研究生: 陳姿瑾
Chen, Tzu-Chin
論文名稱: 磁鄰近效應在拓樸絕緣體與磁性絕緣體CoFe2O4雙層結構之電性觀察與分析
Electric Properties Observation and Analysis on Proximity Effect through Topological Insulator and Magnetic Insulator CoFe2O4 Bilayer Structure
指導教授: 黃榮俊
Huang, J.C.A
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 50
中文關鍵詞: 磁鄰近效應weak antilocalization磁阻量測R-T
外文關鍵詞: proximity effect, weak antilocalization, magnetoresistance, R-T
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要是研究磁性絕緣層與拓撲絕緣體雙層結構的磁鄰近效應(Proximity effect)。首先,在實驗中會利用脈衝雷射沉積儀(PLD)與分子束磊晶系統(MBE)分別成長磁性絕緣層CoFe2O4和拓樸絕緣層Bi2Se3。實驗分成兩個部分,第一部分是藉由改Bi2Se3厚度的方式來降低Bulk載子濃度,在磁阻的量測結果觀察到weak antilocalization (WAL)被抑制的現象,且我們利用擬合HLN方程式得到α值與l_ϕ值並觀察到明顯的變化,表示Bi2Se3層有受到磁性層的磁性散射影響。第二部分則是利用Sb原子的摻雜讓Bi2Se3可以有效的降低Bulk的載子濃度,在不同的Sb摻雜比例的磁阻分析,觀察到WAL被抑制的現象更加顯著。最後我們也透過量測不同外加磁場下,分析溫度與電導的斜率,可觀察到拓樸絕緣體表面態能隙隨著外加磁場變大而變大的趨勢。

    In this study, we mainly investigate the proximity effect in topological insulator and magnetic insulator bilayer system. In the experiment, Bi2Se3Sb/CoFe2O4 heterostructure was fabricated by using the molecule beam epitaxial technique and the pulsed laser deposition system, respectively. To observe the surface state of topological insulator, since we essentially need to reduce the bulk carrier concentration. In next step, a series of heterostructure magnetoresistance results are measured by PPMS. In contrast to single layer sample, Bi2Se3Sb/CFO heterostructure samples can suppress the WAL phenomenon. Then, the MR results are fitted by the modified HLN equation and successfully obtain the size of surface state gap. We can efficiently decrease the bulk carrier concentration of Bi2Se3 by doping Sb. The temperature dependent resistance of heterostructure samples at different external magnetic fields are also measured and analyzed. The results indicate the phenomenon of surface band gap opening with increasing external magnetic field.

    摘要 I Abstract II 致謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIII 第一章、緒論 1 1-1前言 1 1-2拓撲絕緣體的特性 3 1-3文獻回顧 4 1-4 研究動機 11 第二章、相關理論基礎介紹 12 2-1霍爾效應原理(Hall Effect) 12 2-2 Weak localization (WL)和Weak anti-localization (WAL)[16] 14 第三章、實驗流程與儀器介紹 18 3-1實驗流程 18 3-1-1 單層薄膜(Bi2Se3/Al2O3) 18 3-1-2 雙層薄膜(Bi2Se3/CoFe2O4/Al2O3) 19 3-1-3 元件製程流程 20 3-1-4 電性量測與磁阻量測 22 3-2 成長樣品之儀器介紹 23 3-2-1脈衝雷射沉積儀(Pulsed Laser Deposition,PLD) 23 3-2-2 分子束磊晶系統(Molecular Beam Epitaxy system) 24 3-3 分析樣品之儀器介紹 26 3-3-1 X-ray 薄膜繞射儀(X-ray Diffraction) 26 3-3-2 原子力顯微鏡(Atomic Force Microscopy ; AFM) 27 3-3-2 物理性質量測系統儀(Physical Property Measurement System, PPMS) 29 第四章、實驗結果與討論 30 4-1 CoFe2O4(111)/Al2O3薄膜結構 30 4-2 改變拓樸絕緣體厚度之雙層結構Bi2Se3/CoFe2O4(111) 32 4-2-1 X-ray Diffraction和AFM 結構分析 32 4-2-2 電性與磁阻量測之分析 33 4-3 摻雜Sb在Bi2Se3/CoFe2O4(111)之雙層結構 36 4-3-1 X-ray Diffraction和AFM 結構分析 36 4-3-2 電性與磁阻量測之分析 37 4-4 Bi2Se3/CoFe2O4與Bi2Se3Sb(0.6)/CoFe2O4之變溫磁阻與變場R-T量測 40 4-4-1 變溫磁阻量測 40 4-4-2 變場R-T量測 42 第五章、結論 47 參考文獻 48

    [1] Kane, C. L., & Mele, E. J. (2005). Quantum spin Hall effect in graphene.Physical review letters, 95(22), 226801.
    [2] Moore, J. E., & Balents, L. (2007). Topological invariants of time-reversal-invariant band structures. Physical Review B, 75(12), 121306.
    [3] Bernevig, B. A., Hughes, T. L., & Zhang, S. C. (2006). Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science,314(5806), 1757-1761.
    [4] Markus König, Science 318,766-770,1148047(2007)
    [5] Hasan, M. Z., & Kane, C. L. (2010). Colloquium: topological insulators.Reviews of Modern Physics, 82(4), 3045.
    [6] Kulbachinskii, V. A., Kaminskii, A. Y., Kindo, K., Narumi, Y., Suga, K., Lostak, P., & Svanda, P. (2002). Ferromagnetism in new diluted magnetic semiconductor Bi 2− x Fe x Te 3. Physica B: Condensed Matter, 311(3), 292-297.
    [7] Kou, X. F., Jiang, W. J., Lang, M. R., Xiu, F. X., He, L., Wang, Y., ... & Wang, K. L. (2012). Magnetically doped semiconducting topological insulators. Journal of Applied Physics, 112(6), 063912.
    [8] Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y., & Tokura, Y. (2012). Dirac-fermion-mediated ferromagnetism in a topological insulator. Nature Physics,8(10), 729-733.
    [9] Li, M., Chang, C. Z., Wu, L., Tao, J., Zhao, W., Chan, M. H., ... & Zhu, Y. (2015). Experimental Verification of the Van Vleck Nature of Long-Range Ferromagnetic Order in the Vanadium-Doped Three-Dimensional Topological Insulator Sb 2 Te 3. Physical review letters, 114(14), 146802.
    [10] Lang, M., Montazeri, M., Onbasli, M. C., Kou, X., Fan, Y., Upadhyaya, P., ... & Wong, K. L. (2014). Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano letters, 14(6), 3459-3465.
    [11] Katmis, F., Lauter, V., Nogueira, F. S., Assaf, B. A., Jamer, M. E., Wei, P., ... & Jarillo-Herrero, P. (2016). A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature.
    [12]Wei, P., Katmis, F., Assaf, B. A., Steinberg, H., Jarillo-Herrero, P., Heiman, D., & Moodera, J. S. (2013). Exchange-coupling-induced symmetry breaking in topological insulators. Physical review letters, 110(18), 186807.
    [13] Yang, Q. I., Dolev, M., Zhang, L., Zhao, J., Fried, A. D., Schemm, E., ... & Kapitulnik, A. (2013). Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi 2 Se 3-EuS) interface. Physical Review B,88(8), 081407.
    [14] Kandala, A., Richardella, A., Rench, D. W., Zhang, D. M., Flanagan, T. C., & Samarth, N. (2013). Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Applied Physics Letters, 103(20), 202409.
    [15] Jiang, Z., Chang, C. Z., Tang, C., Wei, P., Moodera, J. S., & Shi, J. (2015). Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano letters, 15(9), 5835-5840.
    [16] Lu, H. Z., & Shen, S. Q. (2014, August). Weak localization and weak anti-localization in topological insulators. In SPIE NanoScience+ Engineering (pp. 91672E-91672E). International Society for Optics and Photonics.
    [17] Hikami, S., Larkin, A. I., & Nagaoka, Y. (1980). Spin-orbit interaction and magnetoresistance in the two dimensional random system. Progress of Theoretical Physics, 63(2), 707-710.
    [18] Lu, H. Z., & Shen, S. Q. (2011). Weak localization of bulk channels in topological insulator thin films. Physical Review B, 84(12), 125138.
    [19] Lu, H. Z., Shi, J., & Shen, S. Q. (2011). Competition between weak localization and antilocalization in topological surface states. Physical review letters,107(7), 076801.
    [20] Lu, H. Z., & Shen, S. Q. (2014). Finite-temperature conductivity and magnetoconductivity of topological insulators. Physical review letters, 112(14), 146601.
    [21] Takagaki, Y., Jenichen, B., Jahn, U., Ramsteiner, M., & Friedland, K. J. (2012). Weak antilocalization and electron-electron interaction effects in Cu-doped Bi 2 Se 3 films. Physical Review B, 85(11), 115314.
    [22] Chen, J., He, X. Y., Wu, K. H., Ji, Z. Q., Lu, L., Shi, J. R., ... & Li, Y. Q. (2011). Tunable surface conductivity in Bi 2 Se 3 revealed in diffusive electron transport. Physical Review B, 83(24), 241304.
    [23] Chiu, S. P., & Lin, J. J. (2013). Weak antilocalization in topological insulator Bi 2 Te 3 microflakes. Physical Review B, 87(3), 035122.
    [24] Roy, A., Guchhait, S., Sonde, S., Dey, R., Pramanik, T., Rai, A., ... & Banerjee, S. K. (2013). Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si (111)-(7× 7) surface by molecular beam epitaxy. Applied Physics Letters, 102(16), 163118.
    [25] 吳鎧齊,國立成功大學物理研究所碩士論文 (2015)

    下載圖示 校內:2021-06-30公開
    校外:2021-06-30公開
    QR CODE