簡易檢索 / 詳目顯示

研究生: 陳昭成
Chen, Chao-Chang
論文名稱: 評估高精確度Na/Li地質溫度計作為熱水儲集層溫度指標:以中崙與關子嶺地熱系統為例
Evaluation of the Na/Li Geothermometer for Accurate Reservoir Temperature Estimation: An Application in the Chunglun and Kuantzuling Geothermal Systems
指導教授: 劉厚均
Liu, Hou-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 110
中文關鍵詞: Na-Li地質溫度計熱水儲集層溫度岩性熱液起源
外文關鍵詞: Na-Li geothermometer, Reservoir temperature, Lithology, Fluid origin
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在地熱場域中,透過地質溫度計從地表熱液預測深部儲集層的溫度,已被廣泛的運用,如SiO2、Na/K地質溫度計等。然而,運用在不同岩性的地熱系統,地質溫度計往往獲得不一致或是偏差大的預測值,使得可信度面臨重大的挑戰,也強調多重地質溫度計互相驗證的重要性。本研究針對Na-Li元素在熱液系統相對穩定的化學特性,系統性地分析文獻資料、數據收集及討論影響Na-Li地質溫度計的因素。我們的結果顯示:岩性與熱液來源為影響流體log(Na/Li)最顯著的因素。因此,本研究針對台灣的地質岩性、熱液來源,發展出適用的Na-Li地質溫度計: T (℃) = 1000/ (0.50 (±0.02) log(Na/Li) +1.26(±0.04))-273.15 (r²= 0.7725, n = 223)。
    其中,Na/Li單位為莫耳濃度,適用溫度範圍從33至300℃。新的Na-Li地質溫度計,透過清水地熱實測溫度的驗證,偏差為±5 %內;相比於文獻所提出地質溫度計偏差可高達±20%,預測精確度大幅提升。經過模型迴歸後,也證實岩性以及熱液起源是一個重要的影響。本研究進一步將新的Na-Li地質溫度計用於預測中崙與關子嶺的儲集層溫度;結果顯示中崙與關子嶺溫度分別為120-140℃及140℃,誤差為±4℃。此外,Na-Li地質溫度計受到天水混染導致偏差的程度較Na-K溫度計輕微,僅最濕季樣品表現出異常值。根據Mg/Na vs. Ca/Na、Giggenbach Na-K與K-Mg地質溫度計、氫氧同位素、Na/K及Na/Li進行水化學特徵分析,僅最濕季樣品化學特徵為天水,其餘log(Na/Li)保持恆定,證明Na-Li地質溫度計相對傳統常用的Na-K溫度計較不會受到乾、濕季的影響。本研究成果指出,Na-Li地質溫度計為可靠的地質溫度計,可作為SiO2、Na-K地質溫度計交互驗證的工具,以提升從地表熱液預測儲集層溫度的精確度與可信度。

    In geothermal fields, geothermometers have been widely used to estimate reservoir temperatures from the chemistry of hot-spring surface fluids, such as SiO2 and Na-K geothermometers. However, when applied to geothermal systems with heterogeneous lithologies, geothermometers often yield inconsistent temperatures or exhibit significant bias. This study systematically analyzes reference data, sampling methods, and the influencing factors of the Na/Li geothermometer in geothermal fluids. Our results show that lithology and fluid origin are the most critical controlling factors. Therefore, we establish a regression-derived Na–Li geothermometer specifically adapted to the lithologies and fluid origins of the Taiwan orogenic belt: T (℃) = 1000/ (0.50 (±0.02) log(Na/Li) +1.26(±0.04))-273.15 (r²= 0.7725, n = 223).
    Here, the Na/Li ratio is expressed in molar concentration, and the applicable temperature range is 33—300℃ with Cl- ≤ 0.55 M. The new Na-Li geothermometer, validated by measured temperatures in the Chingshui geothermal field, shows deviations within ±5%. It was further applied to predict reservoir temperatures in the Chunglun and Kuantzuling areas, yielding 120—140℃ and ~140℃, respectively. Based on the analysis of water chemistry, particularly the Mg/Na versus Ca/Na ratios, the Giggenbach ternary Na-K-Mg diagram, and hydrogen and oxygen isotopes, it is evident that the water undergoes significant mixing with meteoric water during the wet periods. This mixing results in the loss of chemical characteristics that typically define geothermal waters. Interestingly, despite this, the Na/Li ratios remain constant throughout the seasons. The results demonstrate that the Na-Li geothermometer is reliable and can be used alongside SiO2 and Na-K geothermometers to improve the accuracy and credibility of reservoir temperature predictions from surface fluids.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第1章 前言 1 1.1 地質溫度計 1 1.1.1 SiO2地質溫度計 2 1.1.2 Na-K地質溫度計 3 1.2 研究動機 6 1.3 研究目的 9 第2章 Na-Li地質溫度計 10 2.1 以文獻資料探討熱液流體Na/Li比值潛在影響因素 10 2.2 建立適合臺灣造山帶熱水儲集層Na-Li地質溫度計 20 2.3 以清水變質泥岩地熱場驗證Na-Li地質溫度計 21 第3章 Na-Li地質溫度計於中崙與關子嶺泥岩溫泉系統的應用 26 3.1 研究目標與區域地質 26 3.2 研究方法與分析項目 29 3.2.1 水化學參數分析 30 3.2.2 主要陰陽離子濃度分析 30 3.2.3 氫氧同位素分析 31 3.3 中崙與關子嶺水化學季節性變異 32 3.3.1 陽離子分析結果 39 3.3.2 陰離子分析結果 44 3.3.3 陰、陽離子分析總結 45 3.4 天水補注對中崙、關子嶺地表熱液流體化學潛在的影響 48 3.4.1 Metal/Na特徵辨識水體性質與天水補注影響 48 3.4.2 氫氧同位素評估地表熱液起源與其受天水補注之影響 49 3.4.3 Giggenbach Na-K與K-Mg地質溫度計評估深部儲集層與地表熱液關聯性 53 3.5 Na-Li地質溫度計於沉積岩岩性地熱區之儲集層溫度評估 55 第4章 Na-Li地質溫度計預測儲集層溫度的優勢 57 4.1 本研究Na-Li地質溫度計預測儲集層溫度與前人方法之比較 57 4.1.1 SiO2地質溫度計以地表熱液預測儲集層溫度 57 4.1.2 Na-K地質溫度計以地表熱液預測儲集層溫度 58 4.1.3 Na-Li地質溫度計以地表熱液預測儲集層溫度 59 4.1.4 Na-Li地質溫度計資料結構分析 62 4.2 Na-K與Na-Li地質溫度計保守性之比較與潛在優勢 67 4.2.1 中崙、關子嶺地區Na—K圖評估Na-K地質溫度計保守性 67 4.2.2 乾、濕季變化評估Na—Li地質溫度計潛在優勢與保守性 68 4.2.3 Na-Mg、K-Mg圖評估中崙、關子嶺地區Na-K地質溫度計干擾因素 71 第5章 總結 73 第6章 參考文獻 75 附錄 90

    石再添(1967)。臺灣活泥火山的調查及其類型與噴泥性質之關係的研究。臺灣石油地質,5,259-311。
    江家榕(2016)。應用多成份地質溫度計探討台灣的地熱儲集層溫度〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://doi.org/10.6345/NTNU202204089
    李清瑞、韓吟龍、江道義(2012)。清水地熱區儲集層參數研究及發電潛能評估。臺灣鑛業,64(1),9-17。https://doi.org/10.30014/TMI.201203.0003
    邵屏華、高銘健(2009)。中埔[臺灣地質圖幅及說明書1/50,000]。圖幅第45號。經濟部中央地質調查所。
    國立成功大學 (2023)。臺南市關子嶺與嘉義縣中崙地區地下三維地質模型建置(1/2)期末報告定稿。經濟部地質調查及礦業管理中心報告(計畫編號: B11232)。經濟部地質調查及礦業管理中心,共538頁。
    張阡肇(2005)。台灣泥火山沈積物之特性、來源與西南部石灰岩體之隱示〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.0284
    張竝瑜、梁俊煌、蔡瀛逸、蔡利局、陳煜斌、林秀雄(2007)。關子嶺溫泉泉質特性與可能形成機制之初步研究。第二屆資源工程研討會論文集,436-440。https://ir.cnu.edu.tw/handle/310902800/24386。
    葉高華(2003)。由流體地球化學探討台灣泥火山的成因。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5dknah。
    Aki, Y., & Hirano, T. (1970). The geothermal system of the Hakone volcano. Geothermics, 2, 1157–1166. https://doi.org/10.1016/0375-6505(70)90428-1
    Arnórsson, S. (1978). Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi, Iceland. Mineralogical Magazine, 42(322), 209–220. https://doi.org/10.1180/minmag.1978.042.322.07
    Arnórsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 47(3), 567–577. https://doi.org/10.1016/0016-7037(83)90278-8
    Baldi, P., Ferrara, G. C., & Panichi, C. (1976). Geothermal research in Western Campania (Southern Italy): chemical and isotopic studies of thermal fluids in the Campi Flegrei. Second United Nations Symposium on Development and Use of Geothermal Resources 1, 687–697.
    Bjornsson, S., Arnórsson, S. A., & Tómasson, J. (1972). Economic Evaluation of Reykjanes Thermal Brine Area, Iceland. AAPG Bulletin, 56. https://doi.org/10.1306/819A4224-16C5-11D7-8645000102C1865D
    Boulegue, J. (1978). Metastable sulfur species and trace metals (Mn, Fe, Cu, Zn, Cd, Pb) in hot brines from the French Dogger. American Journal of Science, 278(10), 1394–1411. https://doi.org/10.2475/ajs.278.10.1394
    Brooks, R. R., Kaplan, I. R., & Peterson, M. N. A. (1969). Trace Element Composition of Red Sea Geothermal Brine and Interstitial Water. In Hot Brines and Recent Heavy Metal Deposits in the Red Sea (pp. 180–203). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-28603-6_20
    Calamai, A., Cataldi, R., Dail’Aglio, M., & Ferrara, G. C. (1976). Preliminary report on the Cesano hot brine deposit (Northern Latium, Italy). Second United Nations Symposium on Development and Use of Geothermal Resources 1, 305–313.
    Can, I. (2002). A new improved Na/K geothermometer by artificial neural networks. Geothermics, 31(6), 751–760. https://doi.org/10.1016/S0375-6505(02)00044-5
    Capuano, R. M., & Cole, D. R. (1982). Fluid-mineral equilibria in a hydrothermal system, Roosevelt hot springs, Utah. Geochimica et Cosmochimica Acta, 46(8), 1353–1364. https://doi.org/10.1016/0016-7037(82)90271-X
    Carpenter, A. B., Trout, M. L., & Pickett, E. E. (1974). Preliminary Report on the Origin and Chemical Evolution of Lead-and Zinc-Rich Oil Field Brines in Central Mississippi. Economic Geology, 69(8), 1191–1206. https://doi.org/10.2113/gsecongeo.69.8.1191
    Chao, H. C., You, C. F., Liu, H. C., & Chung, C. H. (2013). The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochimica et Cosmochimica Acta, 114, 29–51. https://doi.org/10.1016/j.gca.2013.03.035
    Chao, H. C., You, C. F., Wang, B. S., Chung, C. H., & Huang, K. F. (2011). Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones. Earth and Planetary Science Letters, 305(1–2), 32–44. https://doi.org/10.1016/j.epsl.2011.02.033
    Cusicanqui, H., Mahon, W. A. J., & Ellis, A. J. (1976). The geochemistry of the El Tatio geothermal field, Northern Chile’. Second United Nations Symposium on the Development and Use of Geothermal Resources 1, 703–711.
    Dellechaie, F. (1976). A hydrochemical study of the south Santa Cruz Basin near Coolidge. Second United Nations Symposium on Development and Use of Geothermal Resources 1, 339–349.
    Díaz-González, L., Santoyo, E., & Reyes-Reyes, J. (2008). Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos. Revista Mexicana de Ciencias Geológicas, 25(3), 465–482.
    Edmond, J. M., Damm, K. L. Von, Mcduff, R. E., & Measures, C. I. (1982). Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. In Nature (Vol. 297, Issue 20). 187–191. https://doi.org/10.1038/297187a0
    Elders, W. A., McKibben, M. A., & Williams, A. E. (1992). The Salton Sea Hydrothermal System, California, USA: A review. In Y. K. Kharaka & AS. Maest (Eds.), Water-Rock Interaction (Vol. 2, pp. 1283–1288). Balkema, Rotterdam.
    Ellis, A. J. (1966). Volcanic hydrothermal areas and the interpretation of thermal water compositions. Bulletin Volcanologique, 29(1), 575–584. https://doi.org/10.1007/BF02597178
    Ellis, A. J. (1970). Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2, 516–528. https://doi.org/10.1016/0375-6505(70)90050-7
    Ellis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8), 1323–1357. https://doi.org/10.1016/0016-7037(64)90132-2
    Ellis, A. J., & Mahon, W. A. J. (1977). Chemistry and geothermal systems. Academic Press.
    Fausto, J. J., Sanchez, A. A., Jimenez, M. E. S., Esquer, I. P., & Ulloa, F. H. (1979). Hydrothermal geochemistry of the Cerro Preito geothermal field. Second Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, pp. 199–223.
    Fouillac, C. (1983). Chemical geothermometry in CO2-rich thermal waters. Example of the French massif central. Geothermics, 12(2–3), 149–160. https://doi.org/10.1016/0375-6505(83)90025-1
    Fouillac, C., & Ouzounian, G. (1977). Géochimie des eaux thermales de la Guadeloupe.Unpublished Report.
    Fouillac, c., and Michard, G. (1981) Sodium/llithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10, 55 – 70. https://doi.org/10.1016/0375-6505(81)90025-0
    Fournier, R. O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1–4). https://doi.org/10.1016/0375-6505(77)90007-4
    Fournier, R. O. (1979). A Revised Equation for the Na/K Geothermometer. Transactions Geothermal Resources Council, 3, 221–224.
    Fournier, R. O. (1981). Application of water chemistry to geothermal exploration and reservoir engineering. In L. Rybach & L. J. P. Muffler (Eds.), Geothermal Systems: Principles and Case Histories (pp. 109–143). Wiley.
    Fournier, R. O., & Potter, R. W. (1979). Magnesium correction to the NaKCa chemical geothermometer. Geochimica et Cosmochimica Acta, 43(9), 1543–1550. https://doi.org/10.1016/0016-7037(79)90147-9
    Fournier, R. O., Thompson, J. M., & Austin, C. F. (1980). Interpretation of chemical analyses of waters collected from two geothermal wells at Coso, California. Journal of Geophysical Research: Solid Earth, 85(B5), 2405–2410. https://doi.org/10.1029/JB085iB05p02405
    Foustoukos, D. I., James, R. H., Berndt, M. E., & Seyfried, W. E. (2004). Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chemical Geology, 212(1–2), 17–26. https://doi.org/10.1016/j.chemgeo.2004.08.003
    Giggenbach, W. F. (1978). The isotopic composition of waters from the El Tatio geothermal field, Northern Chile. Geochimica et Cosmochimica Acta, 42(7), 979–988. https://doi.org/10.1016/0016-7037(78)90287-9
    Giggenbach, W. F. (1988). Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
    Hayashi, M., & Yamasaki, F. (1974). Hydrothermal alteration of pyroxene andesites in the Otake geothermal area (Japan). Symposium on Water- Rock Interaction, 158–169.
    Helgeson, H. C. (1968). Geologic and thermodynamic characteristics of the Salton Sea geothermal system. American Journal of Science, 266(3), 129–166. https://doi.org/10.2475/ajs.266.3.129
    Houssein, I., Sanjuan, B., & Michard, G. (1993). Indices géochimiques de l’existence d’un fluide à 210 °C dans la région d’Obock (République de Djibouti). Comptes Rendus - Academie Des Sciences, Series II, 316(6), 771–776.
    Howard, J. H., Apps, J. A., Benson, S. M., Goldsten, N. E., Graf, A. N., Haney, J. P., Jackson, D. D., Juprasert, S., Majer, E. L., McEdward, D. G., McEvilly, T. V., Narasimhan, T. N., Schechter, B., Schroeder, R. C., Taylor, P. C., van de Kamp, P. C., & Wolery, T. J. (1978). Geothermal resource and reservoir investigations of U. S. Bureau of Reclamation leaseholds at East Mesa, Imperial Valley, California. https://doi.org/10.2172/6211876
    Huang, Y. H., Liu, H. L., Song, S. R., & Chen, H. F. (2018). An ideal geothermometer in slate formation: A case from the Chingshui geothermal field, Taiwan. Geothermics, 74, 319–326. https://doi.org/10.1016/j.geothermics.2017.11.002
    Janik, C. J., Truesdell, A. H., Sammel, E. A., & White, A. F. (1985). Chemistry of low-temperature geothermal waters at Klamath Falls, Oregon. (Vol. 9). The Council.
    Kartokusumo, W., Mahon, W. A. J., & Seal, K. E. (1976). Geochemistry of the Kawah Kamojang geothermal system, Indonesia. Second United Nations Symposium on Development and Use of Geothermal Resources 1, 757–759.
    Kharaka, Y. K., & Berry, F. A. F. (1976). The influence of geological membranes on the geochemistry of subsurface waters from Eocene sediments at Kettleman North Dome, California—an example of effluent-type waters. In l Cadek & T. Paces (Eds.), Proceedings of the International Symposium on Water-Rock Interaction (pp. 268–277).
    Kharaka, Y. K., & Mariner, R. H. (1989). Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins.
    Kharaka, Y. K., Brown, P. M., & Carothers, W. W. (1978). Chemistry of waters in the geopressured zone from coastal Louisiana: Implications for the geothermal development. Geothermal Resources Council Transactions 2, 371–374.
    Kharaka, Y. K., Callender, E., & Carothers, W. W. (1977). Geochemistry of geopressured geothermal waters from the Texas Gulf Coast. Third Geopressured-Geothermal Energy Conference, 1121–1165.
    Kharaka, Y. K., Hull, R. W., & Carothers, W. W. (1985). Water-rock interactions in sedimentary basins. In: Relationship of Organic Matter and Mineral Diagenesis. Society of Economic Paleontologists and Mineralogists Short Course 17, 79–176.
    Kharaka, Y. K., Lico, M. S., Wright, V. A., & Carothers, W. W. (1979). Geochemistry of formation waters from Pleasant Bayou No.2 well and adjacent areas in coastal Texas. In N. H. Dorfman & W. L. Fisher (Eds.), Fourth United States Gulf Coast Geopressured-Geothermal Energy Conference: Research and Development (pp. 178–193).
    Kharaka, Y. K., Maest, A. S., Fries, T. L., Law, L. M., & Carothers, W. W. (1986). Geochemistry of lead and zinc in oil field brines: Central Mississippi Salt Dome basin revisited. Proceedings of Conference on the Genesis of Stratiform Sediment-Hosted Pb-Zn Deposits, 50–54.
    Kharaka, Y. K., Michael S. Lico, & Leroy M. Law. (1982). Chemical Geothermometers Applied to Formation Waters, Gulf of Mexico and California Basins. https://doi.org/10.1306/03B59EAE-16D1-11D7-8645000102C1865D
    Kharaka, Y., Lico, M. S., & Carothers, W. W. (1980). Predicted Corrosion and Scale-Formation Properties of Geopressured Geothermal Waters From the Northern Gulf of Mexico Basin. Journal of Petroleum Technology, 32(02), 319–324. https://doi.org/10.2118/7866-PA
    Koga, A. (1970). Geochemistry of the waters discharged from drillholes in the Otake and hatchobaru areas. Geothermics, 2, 1422–1425. https://doi.org/10.1016/0375-6505(70)90460-8
    Laboratoire de Geochimie des Eaux. (1978a). Contrat No. 147 EGF, Rapport aux commissions des Communautés Européennes.Unpublished report.
    Laboratoire de Geochimie des Eaux. (1978b). Rapport de la convention INAG No. 3314.Unpublished report.
    Lebedev, L. M. (1973). Minerals of contemporary hydrotherms of Cheleken. Geochemistry Lnternat, 9, 485–504.
    Li, J., Sagoe, G., Wang, X., & Yang, Z. (2021). Assessing the suitability of lithium-related geothermometers for estimating the temperature of felsic rock reservoirs. Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101950
    Lu, Y. C., Song, S. R., Lin, P. H., Taguchi, S., Wang, C., Lai, Y. M., Peng, T. R., & Lee, H. F. (2020). Thermal Fluid Changes after Operating a Geothermal System: A Case Study of the Chingshui Geothermal Field, Taiwan. Geothermics, 87. https://doi.org/10.1016/j.geothermics.2020.101878
    Lu, Y. C., Song, S. R., Song, T. J., Wang, C., Lin, A. T. S., & Taguchi, S. (2024). Applicability of Na/K geothermometer to the metapelitic non-volcanic geothermal fields in the Taiwan orogenic belt. Geothermics, 124. https://doi.org/10.1016/j.geothermics.2024.103133
    Lu, Y. C., Song, S. R., Wang, P. L., Wu, C. C., Mii, H. S., MacDonald, J., Shen, C. C., & John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences, 149, 124–133. https://doi.org/10.1016/j.jseaes.2017.03.004
    Mahon W. A. J. (1962). A chemical survey of the steam and water discharged from drillholes and hot springs at Kawerau. N.Z. J. Sci., 5, 417–433.
    Mahon, W. A. J., & Finlayson, J. B. (1972). The chemistry of the Broadlands geothermal area, New Zealand. American Journal of Science, 272(1), 48–68. https://doi.org/10.2475/ajs.272.1.48
    Manon, A., Mazor, E., Jimenez, M., Sanchez, A., Fausto, J., & Zenizo, C. (1977). Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. https://doi.org/10.2172/5057448
    Mariner, R. H., & Willey, L. M. (1976). Geochemistry of thermal waters in Long Valley, Mono County, California. Journal of Geophysical Research, 81(5), 792–800. https://doi.org/10.1029/JB081i005p00792
    Mariner, R. H., Presser, T. S., Rapp, J. B., & Willey, L. M. (1975). Minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon.
    Mariner, R. H., Rapp, J. B., Willey, L. M., & Presser, T. S. (1974). The chemical composition and estimated minimum thermal reservoir temperatures of the principal hot springs of northern and central Nevada. https://doi.org/10.3133/ofr741066
    Mercado, S. (1976). Migracion de fluidos geotermicos y distribucion de temperaturas en el subsuelo del campo geotermico de Cerro Prieto, Baja California, Mexico. Development and Use of Geothermal Resources 1, 487–492.
    Merino, E. (1975). Diagenesis in tertiary sandstones from Kettleman North Dome. California—II. Interstitial solutions: Distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy. Geochimica et Cosmochimica Acta, 39(12), 1629–1645. https://doi.org/10.1016/0016-7037(75)90085-X
    Michard, G. (1979). ( Chemical geothermometers). | Geothermometres chimiques. Bulletin Bureau Recherches Geologiques et Minieres, Section III, 2, 183–190.
    Michard, G. (1990). Behaviour of major elements and some trace elements Cs. In Chemical Geology (Vol. 21). Elsevier Science Publishers B.V.
    Michard, G., Stettler, A., Fouillac, C., Ouzounian, G., & Mandeville, D. (1976). Subsuperficial changes in chemical composition of the thermomineral waters of Vichy basin. Geothermal implications. Geochemical Journal, 10(3), 155–161. https://doi.org/10.2343/geochemj.10.155
    Millot, R., & Négrel, P. (2007). Multi-isotopic tracing (δ7Li, δ11B, 87Sr/86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France. Chemical Geology, 244(3–4), 664–678. https://doi.org/10.1016/j.chemgeo.2007.07.015
    Millot, R., Scaillet, B., & Sanjuan, B. (2010). Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta, 74(6), 1852–1871. https://doi.org/10.1016/j.gca.2009.12.007
    Mottl, M. J., Seewald, J. S., Wheat, C. G., Tivey, M. K., Michael, P. J., Proskurowski, G., McCollom, T. M., Reeves, E., Sharkey, J., You, C. F., Chan, L. H., & Pichler, T. (2011). Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta, 75(4), 1013–1038. https://doi.org/10.1016/j.gca.2010.12.008
    Muffler, L. J. P., & White, D. E. (1969). Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, southeastern California. Geological Society of America Bulletin, 80(2), 157–181. https://doi.org/10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2
    Murray, K. S., Jonas, M. L., & Lopez, C. A. (1985). Geochemical Exploration of the Calistoga Geothermal Resource Area, Napa Valley California. Geothermal Resources Council Transactions 9, 339–344. https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1001288
    Nathenson, M., Nehring, N. L., Crosthwaite, E. G., Harmon, R. S., Janik, C., & Borthwick, J. (1982). Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, cassia county, idaho; box elder county, Utah. Geothermics, 11(4), 215–237. https://doi.org/10.1016/0375-6505(82)90030-X
    Nieva, D., & Nieva, R. (1987a). Developments in geothermal energy in Mexico—part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Systems and CHP, 7(3), 243–258. https://doi.org/10.1016/0890-4332(87)90138-4
    Nieva, D., & Nieva, R. (1987b). Developments in geothermal energy in Mexico—part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Systems and CHP, 7(3), 243–258. https://doi.org/10.1016/0890-4332(87)90138-4
    Noguchi, K., & Miyazawa, F. (1974). pH value and iron, copper, zinc and lead content of the soil in the Yumoto area of the Narugo hot springs in the Miyagi prefecture, Japan. Symposium on Water - Rock Interaction, 202–208.
    Ólafsson, J., & Riley, J. P. (1978). Geochemical studies on the thermal brine from Reykjanes (Iceland). Chemical Geology, 21(3–4), 219–237. https://doi.org/10.1016/0009-2541(78)90046-3
    Olmstead, F. H., Welch, A. H., Van Denburgh, A. S., & Ingebritsen, S. E. (1984). Geohydrology, aqueous geochemistry, and thermal regime of the Soda Lakes and Upsal Hogback geothermal systems, Churchill County, Nevada. https://doi.org/10.3133/wri844054
    Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, C. T. A., & Hwong, J. L. (2010). Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3–4), 357–366. https://doi.org/10.1016/j.epsl.2009.11.024
    Romano, P., & Liotta, M. (2020). Using and abusing Giggenbach ternary Na-K-Mg diagram. In Chemical Geology (Vol. 541). Elsevier B.V. https://doi.org/10.1016/j.chemgeo.2020.119577
    Sanjuan, B. (2022). Auxiliary Chemical Geothermometers Applied to Waters from some East African Rift Areas (Djibouti, Ethiopia, Kenya) for Geothermal Exploration. https://doi.org/10.48550/arXiv.2406.16451ï
    Sanjuan, B., & Millot, R. (2009). Bibliographical review about Na/Li geothermometry and lithium isotopes applied to worldwide geothermal waters Final report HiT/ Géosciences pour une Terre durable brgm.
    Sanjuan, B., Michard, G., & Michard, A. (1990). Origine des substances dissoutes dans les eaux des sources thermales et des forages de la région Asal-Ghoubbet (République de Djibouti). Journal of Volcanology and Geothermal Research, 43(1–4), 333–352. https://doi.org/10.1016/0377-0273(90)90060-S
    Sanjuan, B., Millot, R., Ásmundsson, R., Brach, M., & Giroud, N. (2014). Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chemical Geology, 389, 60–81. https://doi.org/10.1016/j.chemgeo.2014.09.011
    Santoyo, E., & Díaz-González, L. (2010). A New Improved Proposal of the Na/K Geothermometer to Estimate Deep Equilibrium Temperatures and their Uncertainties in Geothermal Systems. In Proceedings World Geothermal Congress.
    Seyfried, W. E., Seewald, J. S., Berndt, M. E., Ding, K., & Foustoukos, D. I. (2003). Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001957
    Taide, V. Y., Sinharay, R. K., Chavan, H. K., & Dandge, D. B. (2024). Selection of suitable geothermometers for predicting the subsurface temperatures with higher accuracy: A study based on globally distributed geothermal field data. Geothermics, 122. https://doi.org/10.1016/j.geothermics.2024.103088
    Tonani, F. B. (1980). Some Remarks on the Application of Geochemical Techniques in geothermal exploration. In Advances in European Geothermal Research (pp. 428–443). Springer Netherlands. https://doi.org/10.1007/978-94-009-9059-3_38
    Truesdell, A. H. (1976). Summary of section III-geochemical techniques in exploration. Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources., 53–79.
    Truesdell, A. H., Thompson, J. M., Coplen, T. B., Nehring, N. L., & Janik, C. J. (1979). The origin of Cerro Prieto geothermal brine. Second Symposium on the Cerro Prieto Geothermal Field, 224–240.
    Verma, S. P., & Santoyo, E. (1997). New improved equations for Na/K, Na/Li and SiO, geothermometers by outlier detection and rejection. In Journal of Volcanology and Geothermal Research (Vol. 79).
    Weissberg, B. G., & Wilson, P. T. (1977). Montmorillonites and the Na/K Geothermometer. N.Z. D.S.I.R. Bull., 2118, 31–34.
    White, D.E. (1965). Saline waters of sedimentary rocks. In Fluids in Subsurface Environments. Amer. Assoc. Petroleum Geologists, Memoir 4, 342–366.
    You, C. F., Gieskes, J. M., Lee, T., Yui, T. F., & Chen, H. W. (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5), 695–707. https://doi.org/10.1016/j.apgeochem.2003.10.004

    無法下載圖示 校內:2030-08-20公開
    校外:2030-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE