簡易檢索 / 詳目顯示

研究生: 陳信宇
Chen, Hsin-Yu
論文名稱: 地下水流動性可視化:以定率式與序率式方法探討集水區間地下水交換量
Making the Invisible Visible: Evaluation of Inter-catchment Groundwater Flow Using Deterministic and Stochastic Method
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 91
中文關鍵詞: 集水區間地下水流水平衡降雨逕流模式概似不確定性估計
外文關鍵詞: Inter-catchment Groundwater Flow (IGF), Water Balance, Rainfall-Runoff Model, Generalized Likelihood Uncertainty Estimation (GLUE)
相關次數: 點閱:185下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水流存在於水文系統中,然而受限於無法直接觀測,且在集水區水平衡中,普遍假設可忽略等特性,目前對於集水區間地下水流(IGF)的理解仍不明確。本論文旨在利用定率式和序率式方法評估IGF量值與忽略合理性。本研究採用改良型abcd降雨逕流模型,結合SCE-UA最佳化演算法和概似不確定性估計(GLUE),分別從定率式和序率式的角度進行評估。另以地下水交換參數(xg)和有效集水區指數(ECI)兩個指標判斷IGF的方向。結果顯示將IGF納入模型中,可以降低降雨逕流模型模擬的誤差,更好地模仿集水區行為。在濁水溪流域的五個集水區中,根據2011年至2020年的水平衡資料,定率式方法結果顯示,龍門橋集水區年平均地下水流出量為137毫米,佔年降雨5.8%;延平橋與內茅埔集水區年平均地下水流入量分別為747毫米和505毫米,分別佔年降雨20%與31%;玉峰橋集水區趨向於獨立系統,年平均地下水流入量僅有14毫米。寶石橋集水區的IGF方向無法明確判斷。在驗證中,模型模擬結果與地下水位資料推估的IGF方向大多一致。忽略IGF的假設對較小的集水區或在乾季條件下,會導致較大的水平衡計算誤差,而對於較大的集水區或在濕季條件下更為合理。本研究結果顯示在集水區水平衡中考量IGF的重要性,可提升估計地下水與水文循環的準確性。

    Groundwater flow plays a crucial role in hydrological systems. However, understanding inter-catchment groundwater flow (IGF) remains challenging due to its obscure nature and commonly assumed negligible in catchment water balance. To better understand this role, this study aims to evaluate IGF using deterministic and stochastic methods to shed light on this hidden process. This study employed a modified rainfall-runoff model combined with the SCE-UA optimization algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) framework from deterministic and stochastic perspective, respectively. The two indicators, groundwater exchange parameter (xg) and effective catchment index (ECI), were used to identify the direction of IGF. The stochastic GLUE framework demonstrated good simulation performance with containing the majority of observation within a narrow prediction range. The deterministic method revealed that including IGF in the model improved its simulation performance. The water balance data from 2011 to 2020 for five catchments in Choshui River Basin revealed that: Long-Men Bridge catchment exported average 137 mm groundwater per year, accounting for 5.8% of the annual precipitation.; Yen-Ping Bridge and Nei-Mao-Pu catchment received average 747 and 505 mm groundwater per year, accounting for 20% and 31% of the annual rainfall, respectively; Yu-Feng Bridge catchment was tend to self-contained catchment and received average 14 mm groundwater per year with deterministic method. The direction of IGF cannot be clearly identified in Bao-Shih Bridge catchment. In validation, the model simulation is mostly consistent with the inferences from the groundwater level data. Ignoring IGF may lead to larger errors, especially in smaller catchments and during the dry season. Overall, this study highlights the importance of considering IGF in a catchment water balance and provides insights into the hydrological cycle.

    Abstract I Acknowledgement IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 5 1.2.1 Catchment and its Water Balance 5 1.2.2 Inter-catchment Groundwater Flow (IGF) 7 1.2.3 Approaches for Analyzing IGF 9 1.2.4 Hydrologic Models with Deterministic and Stochastic Methods 14 1.3 Research objectives 18 1.4 Thesis Outlines 20 Chapter 2 Materials 21 2.1 Choshui River Basin 21 2.2 Data 23 Chapter 3 Methodology 25 3.1 Seasonal Mann-Kendall Trend Test 25 3.2 Split Sample Approach 27 3.3 The “abcd” Rainfall-Runoff Model 28 3.4 Stochastic Method 34 3.4.1 Generalized Likelihood Uncertainty Estimation (GLUE) 34 3.4.2 Sensitivity Analysis 40 3.4.3 Uncertainty Indicators 41 3.5 Deterministic Method 43 3.5.1 Model Calibration 43 3.5.2 Model Evaluation 46 3.6 Catchment State and IGF Direction 49 3.7 Validation of IGF Direction using Groundwater Levels 50 Chapter 4 Results and Discussion 51 4.1 Trend Analysis and Split Sample 51 4.2 Sensitivity Analysis 53 4.3 Simulation Results of Stochastic Method 57 4.4 Catchment Status and IGF Direction 60 4.5 Simulation Results of Deterministic Method 62 4.6 IGF Simulation with deterministic and stochastic methods 67 4.7 Hydraulic Head Difference 73 4.8 Limitations and Advances 76 Chapter 5 Conclusion 78 Reference 80 Appendix 89

    1. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C., TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12, (2018).
    2. Abbaspour, K. C., Johnson, C., & Van Genuchten, M. T., Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3(4), 1340-1352, (2004).
    3. Alvarez-Campos, O., Olson, E. J., Welp, L. R., Frisbee, M. D., Zuñiga Medina, S. A., Díaz Rodríguez, J., . . . Jara, J. M., Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes. Hydrology and Earth System Sciences, 26(2), 483-503, (2022).
    4. Ameli, A., Gabrielli, C., Morgenstern, U., & McDonnell, J., Groundwater subsidy from headwaters to their parent water watershed: A combined field‐modeling approach. Water Resources Research, 54(7), 5110-5125, (2018).
    5. Anand, J., Gosain, A., Khosa, R., & Srinivasan, R., Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies, 16, 32-53, (2018).
    6. Arnoux, M., Halloran, L. J., Berdat, E., & Hunkeler, D., Characterizing seasonal groundwater storage in alpine catchments using time‐lapse gravimetry, water stable isotopes and water balance methods. Hydrological Processes, 34(22), 4319-4333, (2020).
    7. Arsenault, R., Brissette, F., & Martel, J.-L., The hazards of split-sample validation in hydrological model calibration. Journal of Hydrology, 566, 346-362, (2018).
    8. Ball, L. B., Caine, J. S., & Ge, S., Controls on groundwater flow in a semiarid folded and faulted intermountain basin. Water Resources Research, 50(8), 6788-6809, (2014).
    9. Beven, K., & Binley, A., The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279-298, (1992).
    10. Beven, K., & Freer, J., Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249(1-4), 11-29, (2001).
    11. Beven, K. J. Rainfall-runoff modelling: the primer, John Wiley & Sons. 2011
    12. Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., . . . Sivapalan, M., Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal, 64(10), 1141-1158, (2019).
    13. Bárdossy, A., & Anwar, F., Why our rainfall-runoff models keep underestimating the peak flows? Hydrology and Earth System Sciences Discussions, 1-30, (2022).
    14. Bouaziz, L., Weerts, A., Schellekens, J., Sprokkereef, E., Stam, J., Savenije, H., & Hrachowitz, M., Redressing the balance: quantifying net intercatchment groundwater flows. Hydrology and Earth System Sciences, 22(12), 6415-6434, (2018).
    15. Budyko, M. I., Miller, D. H., & Miller, D. H. Climate and life (Vol. 508), Academic press New York. 1974
    16. Carter, V., Technical aspects of wetlands: wetland hydrology, water quality, and associated functions. USGS Water Supply Paper, 2425, 1-25, (1996).
    17. Charlier, J.-B., Lachassagne, P., Ladouche, B., Cattan, P., Moussa, R., & Voltz, M., Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: a multi-disciplinary experimental approach. Journal of Hydrology, 398(3-4), 155-170, (2011).
    18. Chen, N.-C., Wen, H.-Y., Li, F.-M., Hsu, S.-M., Ke, C.-C., Lin, Y.-T., & Huang, C.-C., Investigation and estimation of groundwater level fluctuation potential: a case study in the Pei-Kang River Basin and Chou-Shui River Basin of the Taiwan mountainous region. Applied Sciences, 12(14), 7060, (2022).
    19. Chow, V., Maidment, D., & Mays, L. Applied Hydrology, Mc-Graw Hill. 1988
    20. Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J., Ferguson, G., & McIntosh, J. C., Where is the bottom of a watershed? Water Resources Research, 56(3), e2019WR026010, (2020).
    21. Criss, R. E., & Winston, W. E., Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22(14), 2723-2725, (2008).
    22. Danapour, M., Højberg, A. L., Jensen, K. H., & Stisen, S., Assessment of regional inter-basin groundwater flow using both simple and highly parameterized optimization schemes. Hydrogeology Journal, 27(6), 1929-1947, (2019).
    23. Dietrich, J., & Uniyal, B., Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy. Environmental Modelling & Software, 124, 104606, (2020).
    24. Dingman, S. L. Physical hydrology, Waveland press. 2015
    25. Duan, Q., Sorooshian, S., & Gupta, V., Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4), 1015-1031, (1992).
    26. Egusa, T., Oda, T., Sato, T., & Kumagai, T. o., Estimation of sub‐annual inter‐catchment groundwater flow using short‐term water balance method. Hydrological Processes, 35(9), e14368, (2021).
    27. Fan, Y., Are catchments leaky? Wiley Interdisciplinary Reviews: Water, 6(6), e1386, (2019).
    28. Farmer, W. H., & Vogel, R. M., On the deterministic and stochastic use of hydrologic models. Water Resources Research, 52(7), 5619-5633, (2016).
    29. Frisbee, M. D., Tysor, E. H., Stewart‐Maddox, N. S., Tsinnajinnie, L. M., Wilson, J. L., Granger, D. E., & Newman, B. D., Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology. Geophysical Research Letters, 43(3), 1158-1165, (2016).
    30. Genereux, D., Comparison of naturally-occurring chloride and oxygen-18 as tracers of interbasin groundwater transfer in lowland rainforest, Costa Rica. Journal of Hydrology, 295(1-4), 17-27, (2004).
    31. Genereux, D. P., Jordan, M. T., & Carbonell, D., A paired‐watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica. Water Resources Research, 41(4), (2005).
    32. Gordon, B. L., Crow, W. T., Konings, A. G., Dralle, D. N., & Harpold, A. A., Can we use the water budget to infer upland catchment behavior? The role of data set error estimation and interbasin groundwater flow. Water Resources Research, 58(9), e2021WR030966, (2022).
    33. Guo, D., Zheng, F., Gupta, H., & Maier, H. R., On the robustness of conceptual rainfall‐runoff models to calibration and evaluation data set splits selection: A large sample investigation. Water Resources Research, 56(3), e2019WR026752, (2020).
    34. Guo, W., Hong, F., Yang, H., Huang, L., Ma, Y., Zhou, H., & Wang, H., Quantitative evaluation of runoff variation and its driving forces based on multi-scale separation framework. Journal of Hydrology: Regional Studies, 43, 101183, (2022).
    35. Guppy, L., Uyttendaele, P., Villholth, K. G., & Smakhtin, V. U. Groundwater and sustainable development goals: Analysis of interlinkages. 2018
    36. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F., Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91, (2009).
    37. Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M., Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 52(3), 218-242, (2014).
    38. Hellwig, J., Liu, Y., Stahl, K., & Hartmann, A., Drought propagation in space and time: the role of groundwater flows. Environmental Research Letters, (2022).
    39. Herrera, P. A., Marazuela, M. A., & Hofmann, T., Parameter estimation and uncertainty analysis in hydrological modeling. Wiley Interdisciplinary Reviews: Water, 9(1), e1569, (2022).
    40. Hirsch, R. M., Slack, J. R., & Smith, R. A., Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107-121, (1982).
    41. Hornberger, G. M., & Spear, R. C., Approach to the preliminary analysis of environmental systems. J. Environ. Mgmt., 12(1), 7-18, (1981).
    42. Hsu, S.-M., Quantifying the hydraulic properties of fractured rock masses along a borehole using composite geological indices: A case study in the mid and upper Choshui River Basin in Central Taiwan. Engineering Geology, 284, 105924, (2021).
    43. Huo, W., Li, Z., Zhang, K., Wang, J., & Yao, C., GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins. Journal of Hydrology, 586, 124900, (2020).
    44. Jajarmizadeh, M., Harun, S., & Salarpour, M., A review on theoretical consideration and types of models in hydrology. Journal of Environmental Science and Technology, 5(5), 249-261, (2012).
    45. Jin, X., Xu, C.-Y., Zhang, Q., & Singh, V., Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3-4), 147-155, (2010).
    46. Kampf, S. K., Burges, S. J., Hammond, J. C., Bhaskar, A., Covino, T. P., Eurich, A., . . . McGrath, D., The case for an open water balance: Re‐envisioning network design and data analysis for a complex, uncertain world. Water Resources Research, 56(6), e2019WR026699, (2020).
    47. Kendall, M. G. Rank Correlation Methods (Vol. 202), Charles Griffin. 1975
    48. Klemeš, V., Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31(1), 13-24, (1986).
    49. Knoben, W. J., Freer, J. E., & Woods, R. A., Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331, (2019).
    50. Le Mesnil, M., Charlier, J.-B., Moussa, R., Caballero, Y., & Dörfliger, N., Interbasin groundwater flow: Characterization, role of karst areas, impact on annual water balance and flood processes. Journal of Hydrology, 585, 124583, (2020).
    51. Le Mesnil, M., Moussa, R., Charlier, J.-B., & Caballero, Y., Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm-event timescale. Hydrology and Earth System Sciences, 25(3), 1259-1282, (2021).
    52. Le Moine, N., Andréassian, V., & Mathevet, T., Confronting surface‐and groundwater balances on the La Rochefoucauld‐Touvre karstic system (Charente, France). Water Resources Research, 44(3), (2008).
    53. Le Moine, N., Andréassian, V., Perrin, C., & Michel, C., How can rainfall‐runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resources Research, 43(6), (2007).
    54. Lerat, J., Perrin, C., Andréassian, V., Loumagne, C., & Ribstein, P., Towards robust methods to couple lumped rainfall–runoff models and hydraulic models: A sensitivity analysis on the Illinois River. Journal of Hydrology, 418, 123-135, (2012).
    55. Liu, Y., Wagener, T., Beck, H. E., & Hartmann, A., What is the hydrologically effective area of a catchment? Environmental Research Letters, 15(10), 104024, (2020).
    56. Lʹvovich, M. I. World water resources and their future, American Geophysical Union. 1979
    57. Mann, H. B., Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259, (1945).
    58. Martinez, G. F., & Gupta, H. V., Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resources Research, 46(8), (2010).
    59. McMillan, H., & Clark, M., Rainfall‐runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme. Water Resources Research, 45(4), (2009).
    60. Mirzaei, M., Huang, Y. F., El-Shafie, A., & Shatirah, A., Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stochastic Environmental Research and Risk Assessment, 29, 1265-1273, (2015).
    61. Moges, E., Demissie, Y., Larsen, L., & Yassin, F., Sources of hydrological model uncertainties and advances in their analysis. Water, 13(1), 28, (2020).
    62. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900, (2007).
    63. Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V., Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318(1-4), 200-214, (2006).
    64. Muñoz, E., Arumí, J. L., Wagener, T., Oyarzún, R., & Parra, V., Unraveling complex hydrogeological processes in Andean basins in south‐central Chile: An integrated assessment to understand hydrological dissimilarity. Hydrological Processes, 30(26), 4934-4943, (2016).
    65. Mu, Q., Zhao, M., & Running, S. W., MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document, Collection, 5, 600, (2013).
    66. Mullen, K. M., Continuous global optimization in R. Journal of Statistical Software, 60, 1-45, (2014).
    67. Nash, J. E., & Sutcliffe, J. V., River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290, (1970).
    68. Ndhlovu, G., & Woyessa, Y., Modelling impact of climate change on catchment water balance, Kabompo River in Zambezi River Basin. Journal of Hydrology: Regional Studies, 27, 100650, (2020).
    69. Nelson, S. T., & Mayo, A. L., The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States. Hydrogeology Journal, 22(4), 807, (2014).
    70. Oldham, L. D., Freer, J., Coxon, G., Howden, N., Bloomfield, J. P., & Jackson, C., Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models. Hydrology and Earth System Sciences, 27(3), 761-781, (2023).
    71. Patil, S. D., & Stieglitz, M., Comparing spatial and temporal transferability of hydrological model parameters. Journal of Hydrology, 525, 409-417, (2015).
    72. Peel, M. C., & McMahon, T. A., Historical development of rainfall‐runoff modeling. Wiley Interdisciplinary Reviews: Water, 7(5), e1471, (2020).
    73. Pellicer-Martínez, F., & Martínez-Paz, J. M., Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model. Journal of Hydrology, 519, 1848-1858, (2014).
    74. Pellicer‐Martínez, F., González‐Soto, I., & Martínez‐Paz, J. M., Analysis of incorporating groundwater exchanges in hydrological models. Hydrological Processes, 29(19), 4361-4366, (2015).
    75. Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T., Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232, (2016).
    76. Ragab, R., Kaelin, A., Afzal, M., & Panagea, I., Application of Generalized Likelihood Uncertainty Estimation (GLUE) at different temporal scales to reduce the uncertainty level in modelled river flows. Hydrological Sciences Journal, 65(11), 1856-1871, (2020).
    77. Refsgaard, J. C., & Henriksen, H. J., Modelling guidelines––terminology and guiding principles. Advances in Water Resources, 27(1), 71-82, (2004).
    78. Rice, J. S., & Emanuel, R. E., Ecohydrology of interannual changes in watershed storage. Water Resources Research, 55(10), 8238-8251, (2019).
    79. Safeeq, M., Bart, R. R., Pelak, N. F., Singh, C. K., Dralle, D. N., Hartsough, P., & Wagenbrenner, J. W., How realistic are water‐balance closure assumptions? A demonstration from the southern sierra critical zone observatory and kings river experimental watersheds. Hydrological Processes, 35(5), e14199, (2021).
    80. Sajil Kumar, P. J., Schneider, M., & Elango, L., The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability, 14(1), 340, (2021).
    81. Santos, L., Thirel, G., & Perrin, C., Pitfalls in using log-transformed flows within the KGE criterion. Hydrology and Earth System Sciences, 22(8), 4583-4591, (2018).
    82. Schaller, M. F., & Fan, Y., River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. Journal of Geophysical Research: Atmospheres, 114(D4), (2009).
    83. Schwamback, D., Gesualdo, G. C., Sone, J. S., Kobayashi, A. N. A., Bertotto, L. E., Garcia, M. V. S., . . . Oliveira, P. T. S., Are Brazilian catchments gaining or losing water? The effective area of tropical catchments. Hydrological Processes, 36(3), e14535, (2022).
    84. Senent-Aparicio, J., Alcalá, F. J., Liu, S., & Jimeno-Sáez, P., Coupling SWAT Model and CMB Method for modeling of high-permeability bedrock basins receiving interbasin groundwater flow. Water, 12(3), 657, (2020).
    85. Shen, Z., Chen, L., & Chen, T., Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 16(1), 121-132, (2012).
    86. Singh, A., Imtiyaz, M., Isaac, R., & Denis, D., Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrological Sciences Journal, 59(2), 351-364, (2014).
    87. Spear, R. C., & Hornberger, G., Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water research, 14(1), 43-49, (1980).
    88. Su, Z., He, Y., Dong, X., & Wang, L., Drought monitoring and assessment using remote sensing. Remote Sensing of Hydrological Extremes, 151-172, (2017).
    89. Tayebzadeh Moghadam, N., Abbaspour, K. C., Malekmohammadi, B., Schirmer, M., & Yavari, A. R., Spatiotemporal modelling of water balance components in response to climate and landuse changes in a heterogeneous mountainous catchment. Water Resources Management, 35, 793-810, (2021).
    90. TCCIP. Taiwan Climate Change Projection Information and Adaptation Knowledge Platform, Technical manual for the analysis of gridded observation data and statistical downscaling uncertainty. https://tccip.ncdr.nat.gov.tw/user/km_publish_data_document_one.aspx?dd_id=20210609213136, (2021)
    91. Thomas, H. A., Improved Methods for National tvater Assessment Water Resources Contract: WR15249270. US Water Resources Council: Washington, DC, USA, (1981).
    92. Toth, J., A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795-4812, (1963).
    93. United Nations. The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible. UNESCO. (2022)
    94. Van Beek, L., Wada, Y., & Bierkens, M. F., Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47(7), (2011).
    95. van Griensven, A., & Meixner, T., Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 53(1), 51-59, (2006).
    96. Wagener, T., Sivapalan, M., Troch, P., & Woods, R., Catchment classification and hydrologic similarity. Geography compass, 1(4), 901-931, (2007).
    97. Wang, D., Evaluating interannual water storage changes at watersheds in Illinois based on long-term soil moisture and groundwater level data. Water Resources Research, 48(3), 10759, (2012).
    98. Water Resources Agency. Statistic of Water Resources. (2021)
    99. Weaver, N., El-Ouahabi, T.-A., Hallouin, T., Bourgin, F., Perrin, C., & Andréassian, V. How do machine learning models deal with inter-catchment groundwater flows? (2023)
    100. Willmott, C. J., Rowe, C. M., & Mintz, Y., Climatology of the terrestrial seasonal water cycle. Journal of Climatology, 5(6), 589-606, (1985).
    101. Xiong, L., & O’Connor, K. M., An empirical method to improve the prediction limits of the GLUE methodology in rainfall–runoff modeling. Journal of Hydrology, 349(1-2), 115-124, (2008).
    102. Xiong, L., Wan, M., Wei, X., & O'connor, K. M., Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation/Indices pour évaluer les bornes de prévision de modèles hydrologiques et mise en œuvre pour une estimation d'incertitude par vraisemblance généralisée. Hydrological Sciences Journal, 54(5), 852-871, (2009).
    103. Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H., Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1-2), 1-23, (2008).
    104. Yang, J., Xu, C., Ni, X., & Zhang, X., Study on urban rainfall–runoff model under the background of inter-basin water transfer. Water, 14(17), 2660, (2022).
    105. Yeh, H.-F., Lee, C.-H., Chen, J.-F., & Chen, W.-P., Estimation of groundwater recharge using water balance model. Water Resources, 34, 153-162, (2007).
    106. Zanon, C., Genereux, D. P., & Oberbauer, S. F., Use of a watershed hydrologic model to estimate interbasin groundwater flow in a Costa Rican rainforest. Hydrological Processes, 28(10), 3670-3680, (2014).
    107. Zhang, X., Dong, Q., Zhang, Q., & Yu, Y., A unified framework of water balance models for monthly, annual, and mean annual timescales. Journal of Hydrology, 589, 125186, (2020).
    108. Zhu, Z., Chen, Z., Chen, X., & He, P., Approach for evaluating inundation risks in urban drainage systems. Science of the Total Environment, 553, 1-12, (2016).
    109. Zou, Y., Yan, B., Feng, B., Zhang, J., & Tang, Y., A Three-Parameter Hydrological Model for Monthly Runoff Simulation—A Case Study of Upper Hanjiang River Basin. Water, 15(3), 474, (2023).

    下載圖示 校內:2025-06-30公開
    校外:2025-06-30公開
    QR CODE