簡易檢索 / 詳目顯示

研究生: 黃俊銘
Huang, Chun-Ming
論文名稱: 類循環低密度位元檢查碼之研究及其在光分碼多重擷取網路之效能分析
Studies on Quasi-Cyclic LDPC Codes and the Performance over Optical CDMA Networks
指導教授: 黃振發
Huang, Jen-Fa
楊朝欽
Yang, Chao-Chin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 98
中文關鍵詞: 頻域振幅編碼低密度位元檢查碼光分碼多重擷取前向糾錯
外文關鍵詞: spectral-amplitude-coding (SAC), Forward error correction, low-density parity-check (LDPC) codes, optical code division multiple-access (OCDMA)
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前向糾錯技術已日漸受到廣泛的重視,並被認為是達成高可靠及高品質傳輸之有效方法。其主要的原理是藉著有系統地加入額外之資訊,以用來偵測和儘可能的更正因通道或接受器所導致的錯誤。迄今為止,前向糾錯技術已成功地應用於有線通訊、無線通訊與許多的儲存媒體系統中。

    近幾年來,前向糾錯碼中的低密度位元檢查(low-density parity-check, LDPC)碼因其優越的改錯能力而越來越受到重視。若依建構方式來區分,低密度位元檢查碼可分為兩類:(1)亂數式(random)建構;(2)結構式(structured)建構。一般而言,在長碼長時,亂數建構的低密度位元檢查碼的改錯效能比其等效的結構式低密度位元檢查碼更趨近Shannon limit,但亂數建構低密度位元檢查碼在編碼上比較不容易實現。相反地,結構式低密度位元檢查碼在編碼實現上比較簡單,特別是循環(cyclic)或類循環(quasi-cyclic)低密度位元檢查碼。因此,在本論文中,我們提出一個簡單的方法來設計基於一次碰撞序列碼(One-Coincidence Sequences)的類循環低密度位元檢查碼。由模擬結果得知,這些碼的效能表現可和現有文獻中的低密度位元檢查碼相匹敵。

    此外,隨著寬頻傳輸(Broadband Transmission)的需求量日益遽增,光通訊系統因其可提供大頻寬和低傳輸損耗,而越來越受到重視。其中,光分碼多重擷取(Optical Code-Division Multiple-Access, OCDMA)技術被視為是區域網路的最佳選擇,因為它可在一個具bursty traffic的環境下提供高的統計多工增益。早期的非同調光分碼多重擷取網路是在時域上使用類正交序碼對信號編碼,但這些碼不僅長度很長,而且多重擷取干擾(multiple access interference)限制了網路的同時使用者數。因此有人提出頻域振幅編碼(spectral-amplitude-coding)光分碼多重擷取網路來解決多重擷取干擾的問題。

    然而,在頻域振幅編碼光分碼多重擷取網路中,當接收信號功率較高時,相位強度雜訊(phase-induced intensity noise, PIIN)為主要的雜訊。已經有人證明當相位強度雜訊為主要的雜訊時,系統的效能是無法藉由加大傳送功率來改善。為了改善這個問題,我們提出了一個可運用在頻域振幅編碼光分碼多重擷取網路的modified Welch-Costas (MWC)碼。藉由MWC碼的特性,可利用陣列波導光柵路由/布雷格光纖光柵(fiber Bragg gratings)來建構一小巧且簡單的編/解碼器。除此之外,由於MWC碼為一具有低互相關值的類正交序碼,相位強度雜訊是可以被有效的抑制。因此和之前傳統的頻域振幅編碼光分碼多重擷取網路比較起來,這個以MWC碼來編碼的光分碼多重擷取網路擁有較為優越的的效能表現。

    此外,為了滿足高速光傳輸系統的需求,如何建構一個低成本且高效能的光分碼多重擷取網路是一個重要的議題。因此,我們亦評估將所提出的類循環低密度位元檢查碼,當作另一種用來改善光分碼多重擷取網路效能的方法。從模擬結果得知,藉由類循環低密度位元檢查碼的加入,可以有效的提升以MWC碼來編碼的光分碼多重擷取網路在高速傳輸時的效能。而且隨著光電元件的發展,特別是在製造費用方面,我們的模擬結果將提供網路設計者一個最具成本效益的方案,藉由一高效率之光電技術的混合,可有效地增加光分碼多重擷取網路的容量。

    Forward error correction (FEC) technology has received more and more attentions and is considered as an efficient method to reach high-reliability and high-quality transmission. The principle is to systematically add extra information, which can be used to detect and possibly correct errors caused by corruption from the channel and the receiver. So far, it has been successfully applied to cable, wireless communications and mass storage devices.

    In recent years, among the FEC schemes, low-density parity-check (LDPC) codes have recently received more attentions due to the superior error correction ability. Based on methods of construction, LDPC codes can be divided into two categories: 1) random LDPC codes and 2) structured LDPC codes. In general, long random LDPC codes perform closer to the Shannon limit than their equivalent structured LDPC codes, but the lack of structure makes the encoding process difficult to realize. On the contrary, structured LDPC codes have encoding advantage over random ones, especially cyclic or quasi-cyclic (QC) LDPC codes. Thus, in this dissertation, we propose a simple method to design the QC-LDPC codes from the one-coincidence sequences (OCSs). Simulation results show that these QC-LDPC codes can perform as well as previous LDPC codes in the literature.

    In addition, with the increasing demands for broadband transmission, the optical fiber communication systems are getting more attractive since they offer a large bandwidth and low attenuation. Among them, optical code division multiple-access (OCDMA) offers high statistical multiplexing gain in a bursty traffic environment and is thought to be a more suitable solution in local-area network. Early incoherent optical CDMA networks used pseudo-orthogonal sequences to encode signals in the time domain, but the codes were long and multiple access interference (MAI) limited the number of simultaneous users. Thus, spectral-amplitude-coding (SAC) optical CDMA networks were proposed to eliminate the influence of MAI.

    Nevertheless, for SAC-OCDMA networks, the phase-induced intensity noise (PIIN) is the dominant noise when the signal power is relatively high. It has been shown that the system performance can not be improved by increasing the received optical power when PIIN is the major noise. In order to alleviate this problem, we propose one modified Welch-Costas (MWC) code family for the SAC-OCDMA networks. On utilizing the property of the MWC codes, more compact coder/decoders can be realized via waveguide and fiber gratings. In addition, the influence of PIIN can be efficiently suppressed due to the low cross correlation of the MWC codes. Thus, the MWC-coded OCDMA network has a superior performance as compared to traditional SAC-OCDMA networks.

    Furthermore, to satisfy the high-speed optical transmission, how to construct a low-cost OCDMA network with high performance is an important topic. Therefore, we evaluate the OCS-LDPC codes as another method to improve the performance of the OCDMA networks. Simulation results show that the high speed MWC-coded OCDMA networks with superior performance can be achieved by the use of LDPC codes. Moreover, as optical and electronic devices evolve, their fabrication costs will decrease. Our results allow the network designer to increase the capacity of OCDMA networks with low cost by an efficient mix of technologies.

    Chapter 1 Introduction 1 1.1 Forward Error Correction 3 1.1.1 Reed-Solomon (RS) codes 3 1.1.2 Low-density parity-check (LDPC) codes 4 1.2 Overviews of OCDMA networks 6 1.2.1 Time-Spreading OCDMA Network 7 1.2.2 Time-Spreading/Wavelength-Hopping OCDMA Network 8 1.2.3 Spectral-Amplitude-Coding (SAC) OCDMA Network 9 1.3 Dissertation Preview 12 Chapter 2 Low-Density Parity-Check Codes 14 2.1 Overviews of LDPC codes 14 2.1.1 Tanner graph 15 2.1.2 Random LDPC codes 17 2.1.3 Structured LDPC codes 19 2.1.4 Iterative Decoding Algorithm 21 2.2 Construction of QC-LDPC Codes from One-Coincidence Sequences (OCSs) 31 2.3 Simulation Results 38 2.4 Summary 41 Chapter 3 Spectral-Amplitude-Coding Optical Code-Division Multiple-Access Networks 42 3.1 Fiber Bragg Gratings (FBGs) 43 3.2 Arrayed Waveguide Gratings (AWGs) 46 3.3 M-sequence-coded OCDMA Networks 49 3.3.1 System Configuration 49 3.3.2 Performance Analysis 55 3.4 Modified Welch-Costas (MWC) coded OCDMA Networks 58 3.4.1 MWC codes 59 3.4.2 Implementation of Coder/Decoder 62 3.4.3 Performance Analysis 66 3.5 Summary 73 Chapter 4 Performance analysis of LDPC codes over Optical CDMA networks 74 4.1 M-sequence-coded OCDMA networks with QC-LDPC codes 76 4.2 MWC-coded OCDMA networks with QC-LDPC codes 81 4.3 Summary 87 Chapter 5 Conclusions 88 Appendix 89 References 93

    [1] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd ed: Upper Saddle River, NJ: Prentice-Hall, 2004.
    [2] D. J. C. MacKay and R. M. Neal, "Good codes based on very sparse matrices," in Cryptography and Coding 5th IMA Conf.,C. Boyd, Ed., Lecture Notes in Computer Science, Berlin, Germany, 1995, pp. 100-111.
    [3] N. Alon and M. Luby, "A linear time erasure-resilient code with nearly optimal recovery," IEEE Trans. Inf. Theory, vol. 42, pp. 1732-1736, Nov 1996.
    [4] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inf. Theory, vol. 45, pp. 399-431, Mar 1999.
    [5] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 33, pp. 457-458, Mar 1997.
    [6] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, "Construction of low-density parity-check codes based on balanced incomplete block designs," IEEE Trans. Inf. Theory, vol. 50, pp. 1257-1268, Jun 2004.
    [7] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, "Near-Shannon-limit quasi-cyclic low-density parity-check codes," IEEE Trans. Commun., vol. 52, pp. 1038-1042, 2004.
    [8] M. P. C. Fossorier, "Quasi-cyclic low-density parity-check codes from circulant permutation matrices," IEEE Trans. Inf. Theory, vol. 50, pp. 1788-1793, Aug 2004.
    [9] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, Jr., "LDPC block and convolutional codes based on circulant matrices," IEEE Trans. Inf. Theory, vol. 50, pp. 2966-2984, 2004.
    [10] S. Kim, J. S. No, H. B. Chung, and D. J. Shin, "On the girth of Tanner (3,5) quasi-cyclic LDPC codes," IEEE Trans. Inf. Theory, vol. 52, pp. 1739-1744, Apr 2006.
    [11] M. Lentmaier and K. S. Zigangirov, "On generalized low-density parity-check codes based on hamming component codes," IEEE Commun. Lett., vol. 3, pp. 248-250, Aug 1999.
    [12] J. Lu and J. M. F. Moura, "Structured LDPC codes for high-density recording: large girth and low error floor," IEEE Trans. Magn., vol. 42, pp. 208-213, 2006.
    [13] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, "Construction of regular and irregular LDPC codes: Geometry decomposition and masking," IEEE Trans. Inf. Theory, vol. 53, pp. 121-134, Jan 2007.
    [14] J. H. Chen, R. M. Tanner, J. T. Zhang, and M. P. C. Fossorier, "Construction of irregular LDPC codes by quasi-cyclic extension," IEEE Trans. Inf. Theory, vol. 53, pp. 1479-1483, Apr 2007.
    [15] C. M. Huang, J. F. Huang, and C. C. Yang, "Construction of quasi-cyclic LDPC codes from quadratic congruences," IEEE Commun. Lett., vol. 12, pp. 313-315, Apr 2008.
    [16] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based on finite geometries: A rediscovery and new results," IEEE Trans. Inf. Theory, vol. 47, pp. 2711-2736, Nov 2001.
    [17] B. Vasic, I. B. Djordjevic, and R. K. Kostuk, "Low-density parity check codes and iterative decoding for long-haul optical communication systems," J. Lightwave Technol., vol. 21, pp. 438-446, Feb 2003.
    [18] "Forward error correction for submarine systems," ITU Telecommunication Standardization Sector, Tech. Rec. G.975, 1996.
    [19] J. Y. Hui, "Pattern Code Modulation and Optical Decoding-A Novel Code-Division Multiplexing Technique for Multifiber Networks," IEEE J. Sel. Areas Commun., vol. 3, pp. 916-927, 1985.
    [20] N. Karafolas and D. Uttamchandani, "Optical Fiber Code Division Multiple Access Networks: A Review," Opt. Fiber Technol., vol. 2, pp. 149-168, 1996.
    [21] O. Ait Sab and V. Lemaire, "Block turbo code performances for long-haul DWDM optical transmission systems," in Proc., Optical Fiber Communication Conf., 2000, pp. 280-282.
    [22] T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, "Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems," IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 376-386, Mar-Apr 2004.
    [23] J. Youn, H. Jang, K. Kim, and J. Jeong, "BER performance due to irregularity of row-weight distribution of the parity-check matrix in irregular LDPC codes for 10-Gb/s optical signals," J. Lightwave Technol., vol. 23, pp. 2673-2680, Sep 2005.
    [24] O. Milenkovic, I. B. Djordjevic, and B. Vasic, "Block-circulant low-density parity-check codes for optical communication systems," IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 294-299, 2004.
    [25] S. Ayotte and L. A. Rusch, "Increasing the capacity of SAC-OCDMA: Forward error correction or coherent sources?," IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 1422-1428, Sep-Oct 2007.
    [26] I. S. Reed and G. Solomon, "Polynomial Codes Over Certain Finite Fields," J. Soc. Ind. Appl. Math., vol. 8, pp. 300-304, 1960.
    [27] R. Gallager, "Low-density parity-check codes," IEEE Trans. Inf. Theory, vol. 8, pp. 21-28, 1962.
    [28] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf. Theory, vol. 27, pp. 533-547, 1981.
    [29] R. M. Tanner, "Spectral graphs for quasi-cyclic LDPC codes," in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, Jun., 2001, p. 226.
    [30] S. J. Johnson and S. R. Weller, "A family of irregular LDPC codes with low encoding complexity," IEEE Commun. Lett., vol. 7, pp. 79-81, Feb 2003.
    [31] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, "On algebraic construction of Gallager and circulant low-density parity-check codes," IEEE Trans. Inf. Theory, vol. 50, pp. 1269-1279, 2004.
    [32] J. Xu, L. Chen, L. Q. Zeng, L. Lan, and S. Lin, "Construction of low-density parity-check codes by superposition," IEEE Trans. Commun., vol. 53, pp. 243-251, 2005.
    [33] S. Lin, L. Chen, J. Xu, and I. Djurdjevic, "Near Shannon limit quasi-cyclic low-density parity-check codes," in Proc. 2003 IEEE GlobeCom Conf., Dec. 2003, pp. 2030-2035.
    [34] T. Ofarrell and S. Lochmann, "Performance analysis of an optical correlator reveiver for SIK DS-CDMA communication-systems," Electron. Lett., vol. 30, pp. 63-65, Jan 1994.
    [35] J. A. Salehi, "Code division multiple-access techniques in optical fiber networks. I. Fundamental principles," IEEE Trans. Commun., vol. 37, pp. 824-833, Aug 1989.
    [36] P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiberoptic local area network using optical-processing," J. Lightwave Technol., vol. 4, pp. 547-554, May 1986.
    [37] K. Kitayama, "Novel spatial spread-spectrum based fiber optic CDMA networks for image transmission," IEEE J. Sel. Areas Commun., vol. 12, pp. 762-772, May 1994.
    [38] W. C. Kwong and G. C. Yang, "Image transmission in multicore-fiber code-division multiple-access networks," IEEE Commun. Lett., vol. 2, pp. 285-287, 1998.
    [39] L. Tancevski, I. Andonovic, M. Tur, and J. Budin, "Hybrid wavelength hopping/time spreading code division multiple access systems," IEE Proc.-Optoelectron., vol. 143, pp. 161-166, Jun 1996.
    [40] G. C. Yang and W. C. Kwong, "Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks," IEEE Trans. Commun., vol. 45, pp. 1426-1434, 1997.
    [41] A. A. Shaar and P. A. Davies, "Prime sequences: quasi-optimal sequences for OR channel code division multiplexing," Electron. Lett., vol. 19, pp. 888-890, 1983.
    [42] L. Tancevski and L. A. Rusch, "Impact of the beat noise on the performance of 2-D optical CDMA systems," IEEE Commun. Lett., vol. 4, pp. 264-266, Aug 2000.
    [43] D. Zaccarin and M. Kavehrad, "An optical CDMA system based on spectral encoding of LED," IEEE Photonics Technol. Lett., vol. 5, pp. 479-482, Apr 1993.
    [44] M. Kavehrad and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources," J. Lightwave Technol., vol. 13, pp. 534-545, Mar 1995.
    [45] X. Zhou, H. H. M. Shalaby, C. Lu, and T. H. Cheng, "Code for spectral amplitude coding optical CDMA systems," Electron. Lett., vol. 36, pp. 728-729, Apr 2000.
    [46] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems," J. Lightwave Technol., vol. 19, pp. 1274-1281, Sep 2001.
    [47] Z. Wei and H. Ghafouri-Shiraz, "Proposal of a novel code for spectral amplitude-coding optical CDMA systems," IEEE Photonics Technol. Lett., vol. 14, pp. 414-416, Mar 2002.
    [48] I. B. Djordjevic and B. Vasic, "Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems," J. Lightwave Technol., vol. 21, pp. 1869-1875, Sep 2003.
    [49] K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol., vol. 15, pp. 1263-1276, 1997.
    [50] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed waveguide N×N wavelength multiplexer," J. Lightwave Technol., vol. 13, pp. 447-455, 1995.
    [51] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 32, pp. 1645-1646, Aug 1996.
    [52] Z. Kostic and E. L. Titlebaum, "The design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication-systems," IEEE Trans. Commun., vol. 42, pp. 2608-2617, Aug 1994.
    [53] C. C. Yang, "Optical CDMA passive optical network using prime code with interference elimination," IEEE Photonics Technol. Lett., vol. 19, pp. 516-518, Mar-Apr 2007.
    [54] R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin, "Iterative decoding of one-step majority logic deductible codes based on belief propagation," IEEE Trans. Commun., vol. 48, pp. 931-937, 2000.
    [55] H. Xiao and A. H. Banihashemi, "Graph-based message-passing schedules for decoding LDPC codes," IEEE Trans. Commun., vol. 52, pp. 2098-2105, Dec 2004.
    [56] J. A. Salehi and C. A. Brackett, "Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis," IEEE Trans. Commun., vol. 37, pp. 834-842, Aug 1989.
    [57] C. C. Yang, "Compact bi-directional optical CDMA encoder/decoder with low power dissipation," Opt. Fiber Technol., vol. 13, pp. 254-259, Jul 2007.
    [58] C. C. Yang, J. F. Huang, and S. P. Tseng, "Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers," IEEE Photonics Technol. Lett., vol. 16, pp. 641-643, Feb 2004.
    [59] T. Erdogan, "Fiber grating spectra," J. Lightwave Technol., vol. 15, pp. 1277-1294, 1997.
    [60] M. K. Smit, "New focusing and dispersive planar component based on an optical phased array," Electron. Lett., vol. 24, pp. 385-386, 1988.
    [61] H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol., vol. 14, pp. 1097-1105, 1996.
    [62] B. Glance, I. P. Kaminow, and R. W. Wilson, "Applications of the integrated waveguide grating router," J. Lightwave Technol., vol. 12, pp. 957-962, 1994.
    [63] S. Kim, "Cyclic optical encoders/decoders for compact optical CDMA networks," IEEE Photonics Technol. Lett., vol. 12, pp. 428-430, Apr 2000.
    [64] C. F. Lam, D. T. K. Tong, M. C. Wu, and E. Yablonovitch, "Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding," IEEE Photonics Technol. Lett., vol. 10, pp. 1504-1506, Oct 1998.
    [65] E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, "Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation," IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sep 1998.
    [66] R. A. Griffin, D. D. Sampson, and D. A. Jackson, "Coherence coding for photonic code-division multiple access networks," J. Lightwave Technol., vol. 13, pp. 1826-1837, 1995.
    [67] B. Moslehi, "Noise power spectra of optical two-beam interferometers induced by the laser phase noise," J. Lightwave Technol., vol. 4, pp. 1704-1710, 1986.
    [68] J. F. Huang, C. C. Yang, and C. M. Huang, "On Analyzing Quasi-Cyclic LDPC codes over Modified Welch-Quadratic Coded Optical CDMA System," Accepted by Journal of Lightwave Technology, 2009.
    [69] L. Kazovsky, S. Benedetto, and A. Willner, E., Optical Fiber Communication Systems: London, U.K., Artech House, 1996.

    下載圖示 校內:立即公開
    校外:2009-07-15公開
    QR CODE