| 研究生: |
蔡育哲 Tsai, Yu-Je |
|---|---|
| 論文名稱: |
離岸風機支撐結構行為受風浪載重之研究 Study of Offshore Wind Turbine Structural Behavior under Wind and Wave Loads |
| 指導教授: |
朱聖浩
Ju, Sheng-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 離岸結構 、離岸風機 、塔架式支撐結構 、波浪載重 、Morison equation 、風載重 、FAST 、TurbSim 、NREL 5-MW |
| 外文關鍵詞: | offshore structure, offshore wind turbines, jacket-type support, wave load, Morison equation, wind load, FAST, TurbSim, NREL 5-MW |
| 相關次數: | 點閱:120 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討離岸風機支撐結構行為受風浪載重之影響。本研究將分為三個部分,第一部分為波浪載重之計算模組,由規範(DNV-RP-C205)建議公式計算波浪載重,其中包括了Morison equation用來計算流體通過細長圓形桿件之作用力、Airy wave theory 和 Stokes second-order theory用來建構波浪流動之運動特性。第二部分為風力載重之計算模組,風力載重利用美國國家再生能源實驗室(NREL)所開發之分析軟體FAST及TurbSim來計算風作用於風力發電機上之外力。第三部分,將波浪模組和風力模組之載重計算結果輸入到離岸風機支撐結構網格製造程式中(WINDTURB),再由有限元素分析程式(AN)作為平台進行結構分析。最後設計範例進行分析和討論離岸風機支持結構受波浪載重及風載重之行為。研究成果及結構分析程式是由 朱聖浩教授研究團隊所開發,所有軟體都為公開資源,任何人、任何機構均可無償使用。
This study investigates the dynamic behavior of offshore wind turbine support structures under wave and wind loads. This study is divided into three parts. The first part is the calculation module of wave loads according to the standards (DNV-RP-C205), where the Morison equation is included to calculate the wave loads on circular cylinder members, and the Airy wave theory and the Stokes second-order theory are used to describe the wave kinematics. The second part is the calculation module of wind loads, while the wind loading is calculated by programs TurbSim and FAST which were developed by NREL (National Renewable Energy Laboratory). For the last part, the loading calculated by the modules of the wave and wind will be added into the finite element mesh using a mesh generation program (WINDTURB) for the offshore wind turbine support structures. Finite element analysis program AN is thus used to perform the structural analysis. Then, the analysis and discussion of the behavior of offshore wind turbine support structures under wave and wind loads. It is noted that the computer programs developed by the research group of Shen-Haw Ju are open sources and free to be used.
[1] American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design, American Petroleum Institute, RP 2A-LRFD, (1997).
[2] American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design, American Petroleum Institute, RP 2A-WSD, (2010).
[3] American Bureau of Shipping, Design Standards for Offshore Wind Farms, American Bureau of Shipping, (2011).
[4] Abdel Raheem, S.E., Nonlinear Response of Fixed Jacket Offshore Platform Under Structural and Wave Loads, Coupled Systems Mechanics, Vol. 2, No. 1, pp.111-126, (2013).
[5] British Petroleum, BP Statistical Review of World Energy June 2015, British Petroleum, (2015).
[6] Chen, X., Li, J., Chen, J.Y., Nonlinear wave and currents loads analysis of offshore wind turbines, KSCE Journal of Civil Engineering, (2014).
[7] Det Norske Veritas, Design of Offshore Wind Turbine Structures, Det Norske Veritas, DNV-OS-J101, (2014).
[8] Det Norske Veritas, Environmental Conditions and Environmental Loads, Det Norske Veritas, DNV-RP-C205, (2014).
[9] Dymarski, C., Dymarski, P., Żywicki, J., Design and Strength Calculations of the Tripod Support Structure for Offshore Power Plant, Polish Maritime Research 1(85), Vol. 22, pp. 36-46 (2015).
[10] Damiani, R., Jonkman, J., Hayman., G., SubDyn User’S Guide and Theory Manual. National Renewable Energy Laboratory, Technical Report, NREL/TP-5000-63062 (2015).
[11] Gutierrez, J.E., Zamora, B., García, J., Peyrau, M.R., Tool Development Based on FAST for Performing Design Optimization of Offshore Wind Turbines: FASTLognoter, Renewable Energy 55, 69-78, (2013).
[12] Haritos, N., Introduction to The Analysis and Design of Offshore Structures - An Overview, EJSE Special Issue: Loading on Structures, University of Melbourne, (2007).
[13] Hallowell, S., Myers, A.T., Arwade, S.R., Variability of Breaking Wave Characteristics and Impact Loads on Offshore Wind Turbines Supported by Monopoles, Wind Energy, (2015).
[14] International Electrotechnical Commission, Wind Turbines - Part 1: Design Requirements, IEC61400-1, 3rd edition, (2005).
[15] International Standard, Petroleum and Natural Gas Industries - Fixed Steel Offshore Structures, International Organization for Standardization, ISO 19902, (2007).
[16] International Electrotechnical Commission, Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines, IEC61400-3, 1st edition, (2009).
[17] Jonkman, J.M., Buhl, M.L., FAST User's Guide, National Renewable Energy Laboratory, Golden, Colorado, Report No. NREL/TP-500-38230, (2005).
[18] Jonkman, J., Butterfield, S., Musial, W., Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060, (2009)
[19] Jonkman, B.J., Kilcher, L., TurbSim User’s Guide v1.06.00, National Renewable Energy Laboratory, (2012)
[20] Jonkman, B.J., TurbSim User’s Guide v2.00.00, National Renewable Energy Laboratory, (2014)
[21] Jonkman, B., Jonkman, J., FAST v8.12.00a-bjj, National Renewable Energy Laboratory, (2015).
[22] Jonkman, B., Jonkman, J., FAST v8.15.00a-bjj, National Renewable Energy Laboratory, (2016).
[23] Jonkman, J.M., Hayman, G.J., Jonkman, B.J., Damiani, R.R., AeroDyn v15 User’s Guide and Theory Manual, National Renewable Energy Laboratory, (2016)
[24] Kim, K.H., Kim, D.H., Kwak, Y.S., Kim, S.H., Design Load Case Analysis and Comparison for a 5 MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method, KSFM Journal of Fluid Machinery, pp.14-21 (2015).
[25] Kim, B.S., Jin, J.W., Bitkina, O., Kang, K.W., Ultimate Load Characteristics of NREL 5-MW Offshore Wind Turbines with Different Substructures, International Journal of Energy Research, (2016).
[26] Kim, S.Y., Kim, K.M., Park, J.C., Jeon, G.M., Chun, H.H., Numerical Simulation of Wave and Current Interaction with A Fixed Offshore Substructure, International Journal of Naval Architecture and Ocean Engineering, (2016).
[27] Muljadi, E., Butterfield, C.P., Pitch-Controlled Variable-Speed Wind Turbine Generation, IEEE Industry Applications, (1999).
[28] Moriarty, P.J., Hansen, A.C., AeroDyn Theory Manual, National Renewable Energy Laboratory, Technical report NREL/TP-500-36881, (2005).
[29] Park, Y.S., Chen, Z.S., Kim, W.J., CFD Application to Evaluation of Wave and Current Loads on Fixed Cylindrical Substructure for Ocean Wind Turbine, Journal of Ocean Engineering and Technology, Vol. 25(2)., pp. 7-14, (2011).
[30] Platt, A., Jonkman, B., Jonkman, J., InflowWind User’s Guide, National Wind Technology Center, (2015).
[31] Song, J., Rim, C., Nam, Y., Bae, D., Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code, Korea Institute of Machinery and Materials, (2011).
[32] Stubkier, S., Pedersen, H.C., Jonkman, J.M., Analysis of Load Reduction Possibilities Using a Hydraulic Soft Yaw System for a 5-MW Turbine and Its Sensitivity to Yaw-Bearing Friction, Engineering Structures, pp. 123-134, (2014).
[33] Techet, A.H., Morrison’s Equation Class Notes: Spring 2004, Massachusetts Institute of Technology, Cambridge, MA, USA, (2004).
[34] Wang, H., Barthelmie, R.J., Pryor, S.C., Kim, H.G., A new turbulence model for offshore wind turbine standards, Wind Energy, (2014).
[35] Wang, B., Wang, W.H., Li, X., Li, Y., Research of Semi-Integrated and Fully Coupled Analysis Methods of a Fixed Bottom OWT, ICITMI, (2015).