簡易檢索 / 詳目顯示

研究生: 吳政樑
Wu, Chang-lang
論文名稱: 二氧化矽/甲基丙烯酸甲酯核殼型複合乳膠粒子之合成與性質
Synthesis and Characterization of Silica/Polymethyl Methacrylate Core-shell Latexes
指導教授: 凌漢辰
Ling, Han-chern
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 乙烯基三乙氧基矽烷偶合劑核殼複合乳膠顆粒溶膠凝膠法Stöber method
外文關鍵詞: sol-gel, vinyltriethoxysilan, silane, Core-shell, Stöber method
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的是製備二氧化矽/有機高分子之核殼型態複合乳膠顆粒。本實驗先在鹼性環境下,以TEOS (tetraethyoxylsilane)進行溶膠凝膠法,反應製得二氧化矽粒子 (Core)。即傳統的Stöber method。再接以尾端有乙烯基 (vinyl group,C=C)之矽烷偶合劑:VTES (vinyltriethoxysilane),進行表面改質。最後外層以乳化聚合方式,聚合單體MMA (methyl methacrylate),合成外殼 (shell),形成核殼型態之複合乳膠顆粒。最後,分析合成出之乳膠顆粒其粒徑大小、型態、熱性質、FTIR等。以溶膠法製得70~120 nm大小之二氧化矽粒子,為主要反應粒子。以偶合劑先行醇縮合再滴入,可達較好的粒子表面改質效果,其粒徑約90~140 nm。並以乳化聚合方式製備核殼型態複合乳膠顆粒,其粒徑約100~160 nm。增加界面活性劑時,能增加複合顆粒之粒徑大小。

    The purpose of this work is the preparation of silica / polymer composite latex in core-shell structure. Firstly, the silica particles were obtained by the sol-gel reaction of tetraethyoxylsilane (TEOS) in alkaline environment via the traditional Stöber method. In order to facilitate monomer polymerized on the surface of silica particles, the formed silica particles were modified by treating with vinyltriethoxysilane (VTES) so that the reactive vinyl group can be attached onto the silica surface. Finally, the polymerization of methyl methacrylate (MMA) on the surface of treated silica particles was carried out to form a core-shell structure by technique of emulsion polymerization. The prepared silica/PMMA core-shell composite particles were characterized by dynamic light scattering (DLS), TEM, FTIR and TGA.
    It is found that the diameters of the unmodified silica particles, surface-modified silica particles and silica/PMMA particles were in the range of 70~120 nm, 90~140 nm and 100~160 nm, respectively. The modification of silica surface can be successfully achieved by addition of VTES/ethanol solutions which were prepared by dissolution of VTES in ethanol initially. Furthermore, the particle size of silica/PMMA composite increased with increasing surfactant concentration in the emulsion polymerization process.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究內容 1 第二章 文獻回顧與整理 2 2-1 奈米粒子 2 2-1-1 奈米粒子簡介 2 2-1-2 奈米粒子的基本性質 2 2-2 奈米級二氧化矽 5 2-2-1 奈米級二氧化矽簡介 5 2-2-2 奈米級二氧化矽製備 6 2-3 溶膠-凝膠法 7 2-3-1 溶膠-凝膠法簡介 7 2-3-2 溶膠-凝膠法反應機制 8 2-3-3 粒子成核及成長理論 13 2-3-4 膠體粒子穩定性 17 2-3-5 二氧化矽溶膠-凝膠法之影響因素 20 2-4 奈米二氧化矽的表面改質 30 2-4-1 矽烷偶合劑 31 2-5 乳化聚合 34 2-5-1 乳化聚合簡介 34 2-5-2 乳化聚合成核機制 36 2-5-3 二氧化矽乳化聚合發展 40 第三章 實驗方法 44 3-1 藥品 44 3-2 實驗設備與儀器 47 3-3 實驗步驟 48 3-3-1 二氧化矽粒子製備 48 3-3-2 二氧化矽粒子表面改質 49 3-3-3 二氧化矽表面聚甲基丙烯酸甲酯 50 3-4 實驗分析 52 3-4-1 穿透式電子顯微鏡 (TEM) 52 3-4-2 動態光散射儀 (DLS) 53 3-4-3 熱重分析儀(TGA) 54 3-4-4 傅立葉紅外線光譜儀(FT-IR) 54 第四章 結果與討論 55 4-1 溶膠凝膠法合成二氧化矽 55 4-1-1 水量變化 55 4-1-2 乙醇量影響 58 4-1-3 催化劑量影響 60 4-1-4 溶膠成長型態 62 4-2 二氧化矽表面改質 66 4-2-1 不同偶合劑表面改質 66 4-2-2 不同反應時間表面改質型態 69 4-2-3 偶合劑加入方式 70 4-2-4 不同催化劑之表面改質 71 4-3 二氧化矽表面聚甲基丙烯酸甲酯 74 4-3-1 SiO2/MMA核殼型粒子 74 4-3-2 SiO2/MMA核殼型粒子DLS分布 81 4-4 二氧化矽/甲基丙烯酸甲酯核殼鑑定 82 4-4-1 熱重分析儀 (TGA) 82 4-4-2 傅立葉紅外線光譜儀 (FTIR) 85 4-5 結果討論 87 第五章 結論與未來展望 92 參考文獻 94

    1.Schmidt, H.; Wolter, H., “Organically modified ceramics and their application”, J. Non-Crystalline. Solid, 121, 428 (1990)
    2.Iler, R. K., “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica”, Wiley, New York (1979)
    3.Brinker, C. J. and Scherer, G. W., “Sol-Gel Science: The physics and chemistry of sol-gel processing”, Academic Press, Inc., New York (1990)
    4.Sacks, M. D.; Sheu, R. S., “Rheological characterization during the sol-gel transtion”, in “Science of Ceramic Chemical Processing”, eds. Hench, L. L. and Ulrich, D. R., Wiley, New York (1986)
    5.Pierre, A. C., “Introduction to Sol-Gel Processing”, Kluwer, Boston (1998)
    6.LaMer, V. K.; Dinegar, R. H., “Theory, production and mechanism of formation of monodispersed hydrosols”, J. Am. Chem. Soc., 72, 4847 (1950)
    7.Matijević, E., “Monodispersed metal (hydrous) oxides-a fascinating field of colloid science”, Acc. Chem. Res., 14, 22 (1981)
    8.Ocaña, M.; Rodrigure-Clement, R.; Serna, C. J., “Uniform colloidal particles in solution: Formation mechanisms”, Adv. Mater., 7, 212 (1995)
    9.Look, J-L.; Bogush, G. H.; Zukoski, C. F., “Colloidal interactions during the precipitation of uniform submicrometre particles”, Faraday Discuss. Chem. Soc., 40, 345 (1990)
    10.Ocaña, M.; Matijević, E., “Well-defined colloidal tin(Ⅳ) oxide particles”, Acc. Chem. Res., 14, 22 (1990)
    11.Hsu,W. P.; Rönnquist, L.; Matijević, E, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV)”, Langmuir, 4, 31 (1988)
    12.André Vergès, M.; Mifsud, A.; Serna, C. J., “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, J. Chem. Soc. Faraday Trans., 86, 959 (1990)
    13.Morales, M. P.; González Carreño, T.; Serna, C. J., “The formation of a–Fe2O3 monodispersed particles in solution”, J. Mater. Res., 7, 2538 (1992)
    14.Edelson, L. H.; Glaeser, A. M., “Role of Particle Substructure in the Sintering of Monosized Titania”, J. Am. Ceram. Soc., 71, 225 (1988)
    15.Stokes, R. J. and Evans, D. F., “Fundamentals of interfacial engineering”, Wiley-VCH, New York (1997)
    16.Himmel, B.; Gerber, T.; Burger, H., “X-ray diffraction investigations of silica gel structures”, J. Non-Cryst. Solids 91, 122 (1987)
    17.Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J., “Organically modified sol-gel sensors”, Analytical Chemistry 67(1), 22A (1995)
    18.Brinker, C. J.; Scherer, G. W., “Sol→Gel→Glass :Ⅰ. Gelation and gel structure”, J. Non-Cryst. Solids, 70, 301 (1985)
    19.Brinker, C. J., “Hydrolysis and condensation of silicates: Effect on structure”, J. Non-Cryst. Solids, 100, 31 (1988)
    20.Aelion, R.; Loebel, A.; Eirich, F., “ Hydrolysis of Ethyl Silicate”, J. Am. Chem. Soc., 72, 5705 (1950)
    21.Satoh, T.; Akitaya, M.; Konno, M.; Saito, S., “Particles size distribution produced by hydrolysis and condensation of tetraethylorthosilicate”, J. Chem. Eng. Japan, 30, 759 (1997)
    22.周更生; 陳貞志, “新穎功能性複合粒子之製備”, 行政院國家科學委員會專題研究計畫,計畫編號 : NSC92-2214-E007-018, 2004
    23.Vinogradova, E.; Estrada, M.; Moreno, A., “Colloidal aggregation phenomena: Spatial structuring of TEOS-derived silica aerogels”, J. of Colloid & Interface Sci., 298, 209 (2006)
    24.Philipse, A. P.; Vrij, A., “Preparation and properties of nanoaqueous model dispersions of chemically modefied, change silica sphere”, J. of Colloid & Interface Sci., 128, 121 (1989)
    25.Jesionowski, T.; Krysztafkiewicz, A., “Influence of silane coupling agents on surface properties of precipitated silicas”, Appl. Surf. Sci., 172, 18 (2001)
    26.Klein, L. C., “Sol-gel Processing of Silicates”, Ann. Rev. Mater. Sci., 15, 227 (1985)
    27.Brinker, C. J.; Keefer, K. D.; Schaefer, D. W.; Assink, R. A.; Kay, B. D.; Ashley, C. S., “Sol-gel transition in simple silicates II”, J. Non-Cryst. Solids, 63, 45 (1984)
    28.Assink, R. K.; Kay, D. K., “Sol-gel kinetics I. Functional group kinetics”, J. Non-Cryst. Solids, 99, 359 (1988)
    29.Assink, R. K.; Kay, D. K., “Sol-gel kinetics III. Test of the statistical reaction model”, J. Non-Cryst. Solids, 107, 35 (1988)
    30.Stöber, W.; Fink, A.; Bohn, E., “Controlled growth of monodisperse silica spheres in the micro size range”, J. of Colloid & Interface Sci., 26, 92 (1968)
    31.賴炎輝,“以表面改質之奈米粉體強化聚二醚酮基材”,國立中山大學材料科學研究所碩士論文,2006
    32.Fuji, M.; Takei, T.; Watanabe, T.; Chikazawa, M., “Wettability of fine silica powder surfaces modified with several normal alcohols”, Colloids and Surface A: Physicochemicaland Engineering Aspects, 154, 13 (1999)
    33.Liauw, C. M.; Lees, G. C.; Hurst, S. J.; Rothon, R. N.; Ali, S., “Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene-magnesium hydroxide composites”, Composites Part A, 29A, 1313 (1998)
    34.Ahu, S. H.; Kim, S. H.; Lee, S. G., “Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6-naphthalate)”, J. App. Polym. Sci., 94, 812 (2004)
    35.Wu, S.; Shen, J.; Zou, H., “ Polymer/Silica Nanocomposites:Preparation, Characterization, Propertles, and Applications”, Chem. Rev., 108, 3893 (2008)
    36.Hayashi, S.; Fujiki, K.; Tsubokawa, N., “Grafting of hyperbranched polymers onto ultrafine silica_ postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafed onto the surface”, Reactive & Functional Polym., 46, 193 (2000)
    37.Rubio, E.; Almaral, J.; Ramirez-Bon, R.; Castaño, V.; Rodriguez, V., “Organic-inorganic hybrid coating (poly (methyl methacrylate) /mono-disperse silica)”, Optical Mater., 27, 1266 (2005)
    38.Laczka, M.; Cholewa-Kowalska, K.; Kogut, M., “Organic–inorganic hybrid glasses of selective optical transmission”, J. Non-Cryst. Solids., 287, 10 (2001)
    39.Gellermann, C.; Storch, W.; Wolter, H., “Synthesis and Characterization of the Organic Surface Modifications of Monodisperse Colloidal Silica”, J. Sol-gel Sci. Tech., 8, 173 (1997)
    40.Luechinger, M.; Prins, R.; Pirngruber, D. G., “Functionalization of silica surfaces with mixtures of 3-aminopropyl and methyl groups”, Microporous & Mesoporous Material, 85, 111 (2005)
    41.林建中,“高分子化學原理= Principles of polymer chemistry”,第十一版,歐亞書局有限公司, 1994台灣
    42.許繼強,“苯乙烯迷你乳化聚合反應-具官能基單體之效應”, 國立台灣科技大學化學工程研究所碩士論文,2000
    43.Harkins, W. D., “A general theory of the reaction loci in emulsion polymerization. I”, J. Chem. Phys., 13, 381 (1945)
    44.Harkins, W. D., “A general theory of the reaction loci in emulsion polymerization. II”, J. Chem. Phys., 14, 47 (1946)
    45.Harkins, W. D., “A General theory of the mechanism of emulsion polymerization. I”, J. Am. Chem. Soc., 69, 1428 (1947)
    46.Harkins, W. D., “General theory of mechanism of emulsion polymerization. II”, J. Polym. Sci., 5, 217 (1950)
    47.Smith, W. V.; Ewart, R. H., “Kinetics of emulsion polymerization”, J. Chem. Phys., 16, 592 (1948)
    48.Priest, W. J., “Partice growth in the aqueous polymerization of vinyl acetate”, J. Phys. Chem., 56, 1077 (1952)
    49.Fitch, R. M., “The homogeneous nucleation of polymer colloids”, Br. Polym. J., 5, 467 (1973)
    50.Fitch, R. M.; Tsai, C. H., “Particle formation in polymer colloid.Ⅲ:Prediction of the number of particleby a homogenerous nucleation theory”, in “Polymer Colloids”, eds. Fitch, R. M., Plenum Press, New York (1971)
    51.Fitch, R. M.; Prenosil, M. B., “The mechanism of particle formation in polymer hydrosols.Ⅰ:Kinetics of aqueous polymerization of methyl methacrylate”, J. Polym. Sci., 27, 95 (1969)
    52.Lichti, G.; Gilbert, R. G.; Napper, D. H., “The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate”, J. Polym. Sci. Polym. Chem. Ed., 21, 269 (1983)
    53.Feeney, P. J.; Napper, D. H.; Gilbert, R. G., “Coagulative nucleation and particle size distribution in emulsion polymerization”, Macromolecules., 17, 2520 (1984)
    54.Fitch, R. M.; Watson, R. C., “Coagulation kinetics in polymer colloids determined by light scattering”. J. Colloid and Interface Sci., 68, 14 (1979)
    55.Ugelstad, J.; Hansen, F. K.; Lange, S., “Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets”, Die Makromolekulare Chemie, 175, 507 (1974)
    56.Ugelstad, J.; El-Aasser, M. S.; Vanderhoff, J. W., ”Emulsion polymerization Initiation of polymerization in monomer droplets”, J. Polym. Sci. Polym. Lett. Ed., 11, 503 (1973)
    57.Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z., “Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization”, Materials Lett., 58, 3126 (2004)
    58.Zhang, K.; Zheng, L.; Zhang, X.; Chen, X.; Yang, B., “Silica-PMMA core-shell and hollow nanospheres”, Colloids Surf. A:Physicochem. Eng., 277, 145 (2006)
    59.Bourgeat-Lami, E.; Lang, J., “Encapsulation of inorganic particles by dispersion polymerization in polar media 1. Silica nanoparticles encapsulated by polystyrene”, J. Colloid and Interface Sci., 197, 293 (1998)
    60.Bourgeat-Lami, E.; Lang, J., “Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica–polystyrene composite particles”, J. Colloid and Interface Sci., 210, 281 (1999)
    61.Feng, L.; He, L.; Ma, Y.; Wang, Y., “Grafting poly(methyl methacrylate) onto silica nanoparticle surfaces via a facile esterification reaction”, Mater. Chem. Phys., 116, 158 (2009)
    62.Xu, P.; Wang, H.; Tong, R.; Du, Q.; Zhong, W., “Preparation and morphology of SiO2-PMMA nanohybrids by microemulsion polymerization”, Colloid Polym. Sci., 284, 755 (2006)
    63.Cheng, X.; Chen, M.; Zhou, S.; Wu, L., “Preparation of SiO2-PMMA composite particles via conventional emulsion polymerization”, J. Polym. Sci. Polym. Part A Polym. Chem., 44, 3807 (2006)
    64.Corcos, F.; Bourgeat-Lami, E.; Novat, C.; Lang, J., “Poly(styrene-b- ethylene oxide) copolymers as stabilizers for the synthesis of silica–polystyrene core–shell particles”, Colloid Polym. Sci., 277, 1142 (2006)
    65.Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A., “The role of initiation in the synthesis of silica-poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization”, Colloid Polym. Sci., 279, 947 (2001)
    66.Zhang, K.; Chen, H.; Chen, X.; Chen, Zhimin.; Cui, Z.; Yang, B., “Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization”, Macromol. Mater. Eng., 288, 380 (2003)
    67.Reculusa, S.; Mingotaud, C.; Bourgeat-Lami, E.; Duguet, E.; Ravaine, S., “Synthesis of daisy-shaped and multipod-like silica-polystyrene nanocomposites”, Nano Lett., 4, 1677 (2004)
    68.Krysztafkiewicz, A.; Rager, B.; Jesionowski, T., “The effect of surface modification on physicochemical properties of precipitated silica”, J. Mater. Sci., 32, 1333 (1997)
    69.杜逸虹,“聚合體學”,三民書局,1976台灣
    70.Ding, X.; Wang, Z.; Han, D.; Zhang, Y.; Shen, Y.; Wang, Z.; Niu, L., “An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites”, Nanotechnology, 17, 4796 (2006)
    71.王惠君, “以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響”, 中原大學化學工程研究所碩士論文,2004
    72.Kim, K. S.; Kim, J. K.; Kim, W. S., “Influence of reaction conditions on sol-precipitation process producing silicon oxide particles”, Ceramics International, 28, 187 (2002)
    73.Qian, J. Y.; Pearson, R. A.; Dimonie, V. L.; El-Aasser, M. S., “Synthesis and application of core-shell particles as toughening agents for epoxie”, J. Apply. Polym. Sci, 58, 439 (1995)
    74.Kong, Z. Z.; Ruckenstein, E., “TCore-shell latex particles consisting of polysiloxane-poly(styrene-methyl-methacrylate-acrylicacid);Preparation and pore generation”, J. Apply. Polym. Sci., 73, 2235 (1999)
    75.Barari, M.; Sharifi-Sanjani, N., “Synthesis of poly(methyl methacrylate)silica nanocomposite through emulsion polymerization using dimethylaminoethyl methacrylate”, J. Apply. Polym. Sci., 110, 929 (2008)
    76.陳嘉甫, “二氧化矽/聚苯乙烯/聚苯胺核殼型態複合膠粒”,國立台灣大學化學工程研究所碩士論文,2003
    77.蔡宏政, “奈米/次微米級二氧化矽/高分子複合乳膠顆粒的製備”,國立台灣大學化學工程研究所碩士論文,2002
    78.邱顯烈,“以溶膠凝膠法製備Epoxy/SiO2奈米複合材及其在高透光性光電元件封裝之應用研究”,國立成功大學化學工程研究所碩士論文,2005

    下載圖示 校內:2010-07-30公開
    校外:2010-07-30公開
    QR CODE