| 研究生: |
倪芮 Ria, Aniza |
|---|---|
| 論文名稱: |
生質物熱化學轉化以製造生質燃料: 特性描述、統計評估和人工智慧分析 Biomass Thermochemical Conversion for Biofuels: Characterization, Statistical Evaluation, and Artificial Intelligence Analysis |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 焙燒和裂解 、微藻 、廢蘑菇堆肥(SMC) 、生物炭和生物油 、特定 化學生物能 (SCB) 、熱重分析(TGA) 、人工神經網絡(ANN) 、田口法 、方差分析 (ANOVA) 、協同效應和拮抗效應(SE 和 AE) |
| 外文關鍵詞: | Torrefaction and pyrolysis, Microalgae, Spent mushroom compost (SMC), Biochar and bio-oil, Specific chemical bioexergy (SCB), Thermogravimetric analysis (TGA), Artificial neural network (ANN), Taguchi method, Analysis of variance (ANOVA), Synergistic and antagonistic effects (SE and AE) |
| 相關次數: | 點閱:115 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
焙燒和裂解是可再生生質物燃料(生物燃料)生產中典型的熱化學轉化(TC)技術。焙燒也被稱為溫和裂解,是在 200-300 °C 之間的溫度下發生的過程,而裂解過程則是發生在溫度高於 350 °C 時。在兩者之間,有一個焙燒和裂解的過渡區域,發生在 300-350 °C。焙燒和裂解過程通常在無氧環境下進行。氮氣 (N2) 等非氧氣體為典型經常用於焙燒和裂解過程的惰性氣體。
生質物燃料為液態、固態和氣態來至生質物的燃料,而生質物被定義為來自植物和動物的可再生資源。生質物有多種類型,包括主要成分為纖維素、半纖維素和木質素的木質纖維素生質物、含有蛋白質、脂類、碳水化合物、一些色素和多種維生素的藻類生質物、包括糞便、皮膚、脂肪和貝殼的動物性廢棄物,以及含有多種生質物混合的生質物廢物,例如農業廢棄物、森林殘餘物、工業廢棄物、住宅廢棄物等。生質物被認為是用於產生生質能源且同時減少對化石燃料等不可再生能源的過度依賴的可再生材料。生質物原料 (BMF) 使用的其中最大優勢包括它為非常豐富和碳中性材料。
本研究使用了兩種類型的生質物原料,包括微藻和生質物廢棄物。微藻是一種小尺寸 (µm) 的藻類生質物。微藻為具有潛力的 BMF,因為它不需要土地生長,有快速的生長速度,並且有高生產力。廢蘑菇堆肥 (SMC) 是一種木質纖維素農業廢棄物,在收穫季節後從蘑菇農場產生。SMC在台灣的產量非常豐富。木質纖維素和藻類生質物通常含硫量低。使用生質物燃料(生物炭、生物油和生物合成氣)可以減少硫相關污染,例如 SOx。因此,將微藻和 SMC 的農業廢棄物轉化為生物燃料被認為是減少垃圾填埋量和實現循環生物經濟的合適策略。
焙燒和裂解被認為是優良的生質物轉化過程,因為它們需要較少的能量需求。焙燒主要生產為生物炭(一種富含碳的固體材料)、一些生物油和少量生物合成氣。裂解的主要產物則為生物油、部分生物炭和生物合成氣。此外,此研究利用信噪比和方差分析的統計方法來優化焙燒和裂解過程。
人工智慧 (AI)可被形容為像人一樣思考和行動的軟體計算程序。AI被設計來幫助社會解決複雜的任務,以取代大量的勞動力。人工智能廣泛應用於教育、企業、醫療、社交媒體和汽車等領域。在生質能源生產過程中,人工智能,尤其是人工神經網絡(ANN)經常被用於預測生質能生產、輔助優化等。
從文獻中發現,已有大量的研究針對微藻和農業廢棄物,但是,目前沒有研究關注微藻和農業廢棄物 SMC用於生物燃料生產。這項研究研究了微藻和農業廢棄物 SMC 的 TC過程。討論分為三個部分,包括提取微藻的裂解成分、SMC 的焙燒和裂解,以及 SMC 的單獨焙燒。
研究的第一部分透過熱重分析 (TGA) 來討論裂解過程中微藻的提取成分,並將其與動力學模型獨立平行反應 (IPR) 粒子群優化 (PSO)來研究微藻的化學反應速率和活化能。也測量了相互作用效應,即協同效應和拮抗效應(SE 和 AE)。正如前面所強調的,蛋白質的熱值(高熱值 - HHV)約為 5.33 MJ·kg−1,不適合用於生物能源生產。相較之下,脂質的HHV 約為 34.22 MJ·kg-1,而來自碳水化合物(葡萄糖、澱粉和混合物)的成分的 HHV 約為 15.37–15.84 MJ·kg-1,可作為生物能源的潛在材料。從轉化過程可發現物質的熱降解遵循碳水化合物、蛋白質、脂質的順序。動力學研究的三個偽組分模型中獲得超過 96% 的高擬合值,證明動力學模組是合適的預測模型。從相互作用分析的結果可發現,SE 估計佔模型碳水化合物的接近 50% (200–320 °C)。同時,透過觀察三種物質混合物的 TGA 曲線(理論和實驗),發現其可分為四個區域(I-強 SE、II-弱 AE、III-弱 SE 和 IV-強 AE)。
在研究的第二部分,SMC 的生物燃料轉化以催化-磁焙燒-裂解過程進行評估(催化劑:氧化鎂 – MgO;磁性劑:硫酸鐵銨 - FAS,NH4Fe(SO4)2 ;裂解方法:微波輔助加熱(or microwave-assisted heating – MAH)。田口方法被使用於優化和最大化目標函數;同時,ANN模型被使用於執行預測。田口方法的正交陣列則被用於實驗的多重控制。最大化的總生物燃料產量——生物炭產量和生物油產量的 TBY ——為 99.42%,而此結果是使用 355 µm 粒徑、30% 的催化劑、900 W 的微波功率和 30% 的磁性劑進行實驗所取得的。方差分析 (ANOVA) 的催化劑影響分析結果與平均信噪比 (S/N) 的評估結果一致。具有一個隱藏層的 ANN 對於生物炭和生物油預測的最大化結果 TBY 0.9999 和生物油 0.9998 分別表現出出色的準確性。整體而言,這些結果表示,使用 Quickprop的 ANN 可被用於生物能源領域作為預測模型的方法。
在研究的第三部分,SMC 的生物燃料轉化以 MAH 在焙燒條件下進行。本部分引進了“特定化學生質物能(bioexergy)-SCB”的新術語。 SCB 描述了生物燃料中包含的實際能量,為生物燃料表徵的重要參數之一。生質物洗滌被發現可降低灰分含量58.45%(酸洗)和 36.29%(水洗)。在轉化過程之前對生質物進行酸洗並在 540 W 微波功率下添加 35% Fe2O3 進行催化反應的實驗組合得出的最大化 SCB值約為 47.90 MJ·kg-1。 最佳條件下的SCB ,比較原料及處理後材料有著273.05%的提升,大約三倍。 ANN 模型的三個神經元和一個隱藏層方案的 3N-1HL 顯示出非常高的預測精度,即 R2=1。從該結果可判定指定模型對於預測 SCB 生物燃料是準確的。
Torrefaction and pyrolysis are the typical thermochemical conversion (TC) technology in renewable biomass fuel (biofuel) production. Torrefaction, also well-known as mild pyrolysis, is a process that occurs at a temperature between 200-300 °C. Meanwhile, the pyrolysis process occurs further than >350 °C. In between, there is a transitional area of torrefaction and pyrolysis process, which occurs at 300-350 °C. Torrefaction and pyrolysis processes are commonly performed in the absence of an oxidative environment. A non-oxidative gas such as nitrogen (N2) is a typical inert gas frequently utilized to accommodate the torrefaction and pyrolysis processes.
Biomass fuel (biofuel) is any type of fuel in liquid, solid, and gaseous phases derived from biomass-based materials. Biomass is defined as a renewable resource from plants and animals. There are several types of biomass including lignocellulosic-based biomass which mainly contains cellulose, hemicelluloses, and lignin; algal-based biomass which contains protein, lipids, carbohydrates, some pigment, and multi-vitamins; animal-based mostly waste includes manure, skin, fat, and shell; and biomass wastes which possess mix characteristic such as agriculture waste, forest residue, industrial waste, residential waste, etc. Biomass is considered a promising renewable material for generating bioenergy to reduce overreliance upon non-renewable energy from fossil fuels. Some of the advantages of biomass feedstock (BMF) usage including it is highly abundant on Earth and carbon neutral materials.
Two types of materials used in this study include microalgae and biomass waste. Microalgae is one type of algal-based biomass in a small size (µm). Microalgae are promising BMF as it no requires land to grow, possess a faster growth rate, and has high productivity. Spent mushroom compost (SMC) is one type of lignocellulosic agrarian waste that is produced from the mushroom farm after the harvesting season. It is recognized that SMC is highly abundant in Taiwan. Lignocellulosic and algal-based biomasses generally have a low sulfur content. Using biofuels (biochar, bio-oil, and bio-syngas) can reduce sulfur-related pollution such as SOx. In this regard, biofuel conversion from microalgae and agrarian leftovers of SMC is considered a suitable strategy to cut down the disposal of waste in landfill and achieve a sustainable circular bioeconomy.
Torrefaction and pyrolysis are considered suitable biomass conversion processes since they require less energy. Torrefaction produces mainly biochar (a carbon-rich solid material), some bio-oil, and slightly bio-syngas. Meanwhile, pyrolysis produces mainly bio-oil, some biochar, and bio-syngas. Moreover, the statistical analysis of the S/N ratio and ANOVA are utilized to optimize the torrefaction and pyrolysis processes.
Artificial intelligence (AI) is simply termed as a soft-computing program that thinks and acts like human beings. AI is programmed to assist society to solve complex tasks without requiring a huge workforce. AI is widely applied in education, corporate, healthcare, social media, and automobile. In bioenergy production, AI, especially artificial neural networks (ANN), is frequently utilized to predict bioenergy production, assist the optimization, etc.
The literature review suggests that numerous studies have been conducted on microalgae and agriculture waste. However, no study focuses on the extracted substances of microalgae and agriculture waste SMC for biofuel production. This study investigates the TC of biomass fuels from extracted microalgae and agriculture waste SMC. The discussions are segmented into three parts: pyrolysis of extracted microalgae components, torrefaction and pyrolysis of SMC, and solely torrefaction of SMC.
In the first part of the study, the extracted constituents of microalgae are investigated using the pyrolysis process via thermogravimetric analysis (TGA) and it is assimilated with the kinetics model, namely, the independent parallel reaction (IPR) particle swarm optimization (PSO) scheme to investigate the chemical reaction rate and activation energy of extracted microalgae. The interaction effects, namely, synergistic and antagonistic effects (SE and AE) are also measured. As highlighted, the calorific values (higher heating value – HHV) of all extracted substances demonstrate that protein with HHV of about 5.33 MJ·kg−1 is not suitable for directly used to generate bioenergy. Contrarily, a higher HHV of lipids accounted for about 34.22 MJ·kg−1, and some moderate HHV from carbohydrates (glucose, starch, and mixture) accounted for about 15.37–15.84 MJ·kg−1 are suggested prospective materials for bioenergy generation. The conversion process evokes that the thermal degradation of substances obeys the order of carbohydrates followed by protein, then finally, lipid. The high fitting value of over 96% is obtained from the three pseudo-components models of a kinetics study, demonstrating a modeled kinetics scheme is the appropriate predicting model. The interaction analysis unveils that the SE is estimated for almost 50% (200–320 °C) of the model carbohydrates. Concurrently, the TGA curvature (theory and experiment) of the blend of the three substances demonstrates that there are about four domains observed (I–strong SE, II–weak AE, III–weak SE, and IV–strong AE).
In the second part of the study, the biofuel conversion of SMC is evaluated using a catalytic-magnetic torrefaction-pyrolysis process (catalyst: magnesium oxide – MgO, magnetic agent: ferric ammonium sulfate – FAS, NH4Fe(SO4)2 via microwave irradiation (or microwave-assisted heating – MAH). The process is optimized and maximized using the Taguchi method. Meanwhile, the prediction is executed by the ANN model. The Taguchi orthogonal array is applied to arrange the multiple control of the trial. The maximum total biofuel yield – TBY of biochar yield and bio-oil yield is described for 99.42%, achieved by performing a sequencing experiment using 355 µm particle size, 30% of catalysts, 900 W of microwave power, and 30% of magnetic agents. The outcomes of the influence analysis of the catalyst from analysis of variance (ANOVA) agree with the mean signal-to-noise (S/N) ratio evaluation. ANN with one hidden layer exhibits excellent accuracy for the maximum TBY 0.9999 and bio-oil 0.9998 for biochar and bio-oil predictions, respectively. Overall, this result suggests that ANN using a scheme of applying a Quickprop is a suitable method for forecasting models in the bioenergy field.
In the third part of the study, the biofuel conversion of SMC is solely performed in the torrefaction process via MAH. A new term for “specific chemical biomass exergy (bioexergy) – SCB” is demonstrated in this part. SCB describes the actual energy consisted within biofuel. For biofuel properties, SCB is one of the essential parameters of biofuel characterization. Biomass washings may decrease the ash content by 58.45% (acid washing) and 36.29% (water washing). The combination of performing an acid wash on biomass prior to the conversion process combined with adding a 35% Fe2O3 for a catalytic reaction in 540 W of microwave power exhibits the maximum value of total SCB for about 47.90 MJ·kg-1. The improvement of the SCB from the optimum condition is relatively 273.05%, about three-fold from raw to treated materials. The 3N-1HL for three neurons and one hidden layer scheme of the ANN model shows remarkably high accuracy prediction that is accounted for R2=1. This result indicates that the assigned model is accurate for forecasting the SCB biofuel.
Agrawal, A., Chakraborty, S. 2013. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol, 128, 72-80.
Andrade, L.A., Batista, F.R.X., Lira, T.S., Barrozo, M.A.S., Vieira, L.G.M. 2018. Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renewable Energy, 119, 731-740.
Angelis, S., Novak, A.C., Sydney, E.B., Soccol, V.T., Carvalho, J.C., Pandey, A., Noseda, M.D., Tholozan, J.L., Lorquin, J., Soccol, C.R. 2012. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl Biochem Biotechnol, 167(5), 1092-106.
Aniza, R., Chen, W.-H., Yang, F.-C., Pugazhendh, A., Singh, Y. 2022. Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis. Bioresource Technology, 343, 126140.
Aniza, R., Chen, W.H., Lin, Y.Y., Tran, K.Q., Chang, J.S., Lam, S.S., Park, Y.K., Kwon, E.E., Tabatabaei, M. 2021. Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae. Applied Energy, 300.
Arpia, A.A., Chen, W.-H., Lam, S.S., Rousset, P., de Luna, M.D.G. 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chemical Engineering Journal, 403, 126233.
Ashaari, M.A., Singh, K.S.D., Abbasi, G.A., Amran, A., Liebana-Cabanillas, F.J. 2021. Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective. Technological Forecasting and Social Change, 173, 121119.
Awad, O.I., Mamat, R., Ali, O.M., Sidik, N.A.C., Yusaf, T., Kadirgama, K., Kettner, M. 2018. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586-2605.
Azizi, K., Keshavarz Moraveji, M., Abedini Najafabadi, H. 2017. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol, 243, 481-491.
Bach, Q.V., Chen, W.H. 2017. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresour Technol, 246, 88-100.
Barma, S.D. 2019. Ultrasonic-assisted coal beneficiation: A review. Ultrason Sonochem, 50, 15-35.
Bartlett, J., Frost, C. 2008. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 31(4), 466-475.
Basu, P. 2013. Chapter 5 - Pyrolysis. in: Biomass Gasification, Pyrolysis and Torrefaction (Second Edition), (Ed.) P. Basu, Academic Press. Boston, pp. 147-176.
Basu, P. 2018. Torrefaction. in: Biomass Gasification, Pyrolysis and Torrefaction, pp. 93-154.
Becker, E.W. 2007. Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.
Berbić, J., Ocvirk, E., Carević, D., Lončar, G. 2017. Application of neural networks and support vector machine for significant wave height prediction. Oceanologia, 59(3), 331-349.
Bilgen, S., Keleş, S., Kaygusuz, K. 2012. Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae. Energy, 41(1), 380-385.
BP. 2021. Statistical Review of World Energy 2021. British Petroleum (BP) Co.
Burra, K.G., Gupta, A.K. 2018. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Applied Energy, 220, 408-418.
Cai, Y., Zhang, B., Ke, W., Feng, B., Lin, H., Xiao, J., Zeng, W., Li, X., Tao, J., Yang, Z., Ma, W., Liu, T. 2016. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension. Hypertension, 68(1), 62-70.
Cara, C., Romero, I., Oliva, J.M., Sáez, F., Castro, E. 2007. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues. in: Applied Biochemistry and Biotecnology: The Twenty-Eighth Symposium Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and Chemicals Held April 30–May 3, 2006, in Nashville, Tennessee, (Eds.) J.R. Mielenz, K.T. Klasson, W.S. Adney, J.D. McMillan, Humana Press. Totowa, NJ, pp. 379-394.
Chen, C.-Y., Lee, M.-H., Dong, C.-D., Leong, Y.K., Chang, J.-S. 2020a. Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochemical Engineering Journal, 154.
Chen, C., Ma, X., Liu, K. 2011. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 88(9), 3189-3196.
Chen, C.Y., Kuo, E.W., Nagarajan, D., Ho, S.H., Dong, C.D., Lee, D.J., Chang, J.S. 2020b. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour Technol, 302, 122814.
Chen, W.-H., Aniza, R., Arpia, A.A., Lo, H.-J., Hoang, A.T., Goodarzi, V., Gao, J. 2022a. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Applied Energy, 324, 119689.
Chen, W.-H., Chen, K.-H., Chein, R.-Y., Ong, H.C., Arunachalam, K.D. 2022b. Optimization of hydrogen enrichment via palladium membrane in vacuum environments using Taguchi method and normalized regression analysis. International Journal of Hydrogen Energy.
Chen, W.-H., Cheng, C.-L., Lee, K.-T., Lam, S.S., Ong, H.C., Ok, Y.S., Saeidi, S., Sharma, A.K., Hsieh, T.-H. 2021a. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere, 271, 129510.
Chen, W.-H., Eng, C.F., Lin, Y.-Y., Bach, Q.-V. 2020c. Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Conversion and Management, 221, 113165.
Chen, W.-H., Lin, Y.-Y., Liu, H.-C., Chen, T.-C., Hung, C.-H., Chen, C.-H., Ong, H.C. 2019. A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application. Applied Energy, 237, 283-291.
Chen, W.-H., Lo, H.-J., Yu, K.-L., Ong, H.-C., Sheen, H.-K. 2021b. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy. Environmental Pollution, 285, 117196.
Chen, W.-H., Nižetić, S., Sirohi, R., Huang, Z., Luque, R., Papadopoulos, A.M., Sakthivel, R., Nguyen, X.P., Hoang, A.T. 2022c. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource technology, 344, 126207.
Chen, W.-H., Wang, C.-W., Kumar, G., Rousset, P., Hsieh, T.-H. 2018. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresource Technology, 259, 469-473.
Chen, W., Yang, H., Chen, Y., Xia, M., Yang, Z., Wang, X., Chen, H. 2017. Algae pyrolytic poly-generation: Influence of component difference and temperature on products characteristics. Energy, 131, 1-12.
Chen, W.H., Lin, B.J., Huang, M.Y., Chang, J.S. 2015. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol, 184, 314-327.
Chen, Y.-D., Liu, F., Ren, N.-Q., Ho, S.-H. 2020d. Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios. Chinese Chemical Letters, 31(10), 2591-2602.
Choi, S.S., Ko, J.E. 2011. Analysis of cyclic pyrolysis products formed from amino acid monomer. J Chromatogr A, 1218(46), 8443-55.
Damartzis, T., Vamvuka, D., Sfakiotakis, S., Zabaniotou, A. 2011. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol, 102(10), 6230-8.
de Morais, M.G., Costa, J.A. 2007. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol, 129(3), 439-45.
Dincer, I., Rosen, M.A. 2021. Chapter 21 - Sectoral exergy analysis. in: Exergy (Third Edition), (Eds.) I. Dincer, M.A. Rosen, Elsevier, pp. 565-599.
Ding, Z., Zhang, L., Mo, H., Chen, Y., Hu, X. 2021. Microwave-assisted catalytic hydrothermal carbonization of Laminaria japonica for hydrochars catalyzed and activated by potassium compounds. Bioresource Technology, 341, 125835.
Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J.M. 2014. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323-331.
Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A. 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331-3335.
Du, Z., Hu, B., Ma, X., Cheng, Y., Liu, Y., Lin, X., Wan, Y., Lei, H., Chen, P., Ruan, R. 2013. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour Technol, 130, 777-82.
El-Naggar, N.E., Hussein, M.H., Shaaban-Dessuuki, S.A., Dalal, S.R. 2020. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep, 10(1), 3011.
Figueira, C.E., Moreira, P.F., Jr., Giudici, R. 2015. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris. Bioresour Technol, 198, 717-24.
Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., Zabaniotou, A. 2015. Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Research, 11, 184-193.
Gan, Y.Y., Chen, W.-H., Ong, H.C., Lin, Y.-Y., Sheen, H.-K., Chang, J.-S., Ling, T.C. 2021. Effect of wet torrefaction on pyrolysis kinetics and conversion of microalgae carbohydrates, proteins, and lipids. Energy Conversion and Management, 227.
Gautam, R., Varma, A.K., Vinu, R. 2017. Apparent Kinetics of Fast Pyrolysis of Four Different Microalgae and Product Analyses Using Pyrolysis-FTIR and Pyrolysis-GC/MS. Energy & Fuels, 31(11), 12339-12349.
Gouda, N., Panda, A., Singh, R.K., Ratha, S.K. 2018. Pyrolytic conversion of protein rich microalgae Arthrospira platensis to bio-oil. Research Journal of Chemistry and Environment, 22, 54-65.
Guiry, M. 2012. How many species of algae are there? Journal of Phycology, 48.
Han, J., Yu, D., Wu, J., Yu, X., Liu, F., Xu, M. 2022. Effects of torrefaction on ash-related issues during biomass combustion and co-combustion with coal. Part 3: Ash slagging behavior. Fuel, 126925.
Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S. 2013. Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renewable Energy, 60, 625-632.
Henry, C.S., Lynam, J.G. 2020. Embodied energy of rice husk ash for sustainable cement production. Case Studies in Chemical and Environmental Engineering, 2, 100004.
Hrncirik, K., Zeelenberg, M. 2013. Stability of Essential Fatty Acids and Formation of Nutritionally Undesirable Compounds in Baking and Shallow Frying. Journal of the American Oil Chemists' Society, 91(4), 591-598.
Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H. 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol B, 95(1), 33-9.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 54(4), 621-39.
Hu, S., Jess, A., Xu, M. 2007. Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models. Fuel, 86(17-18), 2778-2788.
Huerlimann, R., de Nys, R., Heimann, K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng, 107(2), 245-57.
Jie, L., Yuwen, L., Jingyan, S., Zhiyong, W., Ling, H., Xi, Y., Cunxin, W. 2008. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR. Thermochimica Acta, 467(1-2), 20-29.
Jung, S.-J., Kim, S.-H., Chung, I.-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy, 83, 322-327.
Kalogiannis, K.G., Stefanidis, S.D., Karakoulia, S.A., Triantafyllidis, K.S., Yiannoulakis, H., Michailof, C., Lappas, A.A. 2018. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation. Applied Catalysis B: Environmental, 238, 346-357.
Kang, S., Heo, S., Realff, M.J., Lee, J.H. 2020. Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system. Applied Energy, 265, 114773.
Keskin, T., Nalakath Abubackar, H., Arslan, K., Azbar, N. 2019. Chapter 12 - Biohydrogen Production From Solid Wastes. in: Biohydrogen (Second Edition), (Eds.) A. Pandey, S.V. Mohan, J.-S. Chang, P.C. Hallenbeck, C. Larroche, Elsevier, pp. 321-346.
Khan, I.A., Moustafa, N., Pi, D., Haider, W., Li, B., Jolfaei, A. 2021. An Enhanced Multi-Stage Deep Learning Framework for Detecting Malicious Activities From Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, 1-10.
Khan, S., Fu, P. 2020. Biotechnological perspectives on algae: a viable option for next generation biofuels. Current Opinion in Biotechnology, 62, 146-152.
Kishor, A., Chakraborty, C. 2021. Artificial intelligence and internet of things based healthcare 4.0 monitoring system. Wireless personal communications, 1-17.
Kosnar, Z., Mercl, F., Perna, I., Tlustos, P. 2016. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content. Sci Total Environ, 563-564, 53-61.
Lee, E., Jalalizadeh, M., Zhang, Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497-512.
Lee, K.-T., Du, J.-T., Chen, W.-H., Ubando, A.T., Lee, K.T. 2021. Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation. Environmental Pollution, 285, 117244.
Lee, Y.-Y., Lin, S.-L., Aniza, R., Yuan, C.-S. 2017. Reduction of Atmospheric PM2.5 Level by Restricting the Idling Operation of Buses in a Busy Station. Aerosol and Air Quality Research, 17(10), 2424-2437.
Lemmens, L., Van Buggenhout, S., Van Loey, A.M., Hendrickx, M.E. 2010. Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots. J Agric Food Chem, 58(24), 12769-76.
Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W. 2018. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresource Technology, 251, 49-56.
Li, K., Chen, G., Li, X., Peng, J., Ruan, R., Omran, M., Chen, J. 2019. High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field. Bioresource Technology, 294, 122217.
Li, K., Zhang, L., Zhu, L., Zhu, X. 2017. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 234, 48-52.
Li, Z., Zhao, W., Meng, B., Liu, C., Zhu, Q., Zhao, G. 2008. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresour Technol, 99(16), 7616-22.
Liang, X., Xu, J. 2021. Biased ReLU neural networks. Neurocomputing, 423, 71-79.
Lin, B.-J., Chen, W.-H., Hsieh, T.-H., Ong, H.C., Show, P.L., Naqvi, S.R. 2019. Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels. Renewable Energy, 136, 223-234.
Lin, L., Han, X., Han, B., Yang, S. 2021a. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 50(20), 11270-11292.
Lin, S.-L., Aniza, R., Lee, Y.-Y., Wang, C.-L. 2018. Reduction of traditional pollutants and polychlorinated dibenzo-p-dioxins and dibenzofurans emitted from a diesel engine generator equipped with a catalytic ceramic fiber filter system. Clean Technologies and Environmental Policy, 20(6), 1297-1309.
Lin, Y.-L., Zheng, N.-Y., Hsu, C.-H. 2021b. Torrefaction of fruit peel waste to produce environmentally friendly biofuel. Journal of Cleaner Production, 284.
Lin, Y.-Y., Chen, W.-H., Colin, B., Petrissans, A., Quirino, R.L., Petrissans, M. 2022. Thermodegradation characterization of hardwoods and softwoods in torrefaction and transition zone between torrefaction and pyrolysis. Fuel, 310, 122281.
Liu, H., Ma, X., Li, L., Hu, Z., Guo, P., Jiang, Y. 2014. The catalytic pyrolysis of food waste by microwave heating. Bioresource Technology, 166, 45-50.
Liu, J.L., Lin, J.H. 2007. Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization. Engineering Optimization, 39(3), 287-305.
Liu, Q., Zhong, Z., Wang, S., Luo, Z. 2011. Interactions of biomass components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 90(2), 213-218.
Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., Li, X. 2013. Thermal degradation and stability of starch under different processing conditions. Starch - Stärke, 65(1-2), 48-60.
Ma, J., Feng, S., Zhang, Z., Wang, Z., Kong, W., Yuan, P., Shen, B., Mu, L. 2022. Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes. Energy, 239, 122358.
Ma, R., Huang, X., Zhou, Y., Fang, L., Sun, S., Zhang, P., Zhang, X., Zhao, X. 2017. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures. Bioresource Technology, 238, 616-623.
MacLellan, J., Chen, R., Yue, Z., Kraemer, R., Liu, Y., Liao, W. 2017. Effects of protein and lignin on cellulose and xylan anaylses of lignocellulosic biomass. Journal of Integrative Agriculture, 16(6), 1268-1275.
Mahian, O., Mirzaie, M.R., Kasaeian, A., Mousavi, S.H. 2020. Exergy analysis in combined heat and power systems: A review. Energy Conversion and Management, 226, 113467.
Mamimin, C., Chanthong, S., Leamdum, C., O-Thong, S., Prasertsan, P. 2021. Improvement of empty palm fruit bunches biodegradability and biogas production by integrating the straw mushroom cultivation as a pretreatment in the solid-state anaerobic digestion. Bioresource Technology, 319, 124227.
Mat Aron, N.S., Khoo, K.S., Chew, K.W., Show, P.L., Chen, W.H., Nguyen, T.H.P. 2020. Sustainability of the four generations of biofuels–a review. International Journal of Energy Research, 44(12), 9266-9282.
Mathimani, T., Baldinelli, A., Rajendran, K., Prabakar, D., Matheswaran, M., Pieter van Leeuwen, R., Pugazhendhi, A. 2019. Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. Journal of Cleaner Production, 208, 1053-1064.
Mishra, R.K., Mohanty, K. 2018. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol, 251, 63-74.
Mochizuki, T., Chen, S.-Y., Toba, M., Yoshimura, Y. 2014. Deoxygenation of guaiacol and woody tar over reduced catalysts. Applied Catalysis B: Environmental, 146, 237-243.
Mu, L., Li, T., Wang, Z., Shang, Y., Yin, H. 2021. Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal. Energy, 234, 121286.
Mu, L., Li, T., Zuo, S., Yin, H., Dong, M. 2022. Effect of leaching pretreatment on the inhibition of slagging/sintering of aquatic biomass: Ash transformation behavior based on experimental and equilibrium evaluation. Fuel, 323, 124391.
Nasrudin, N.A., Jewaratnam, J., Hossain, M.A., Ganeson, P.B. 2019. Performance comparison of feedforward neural network training algorithms in modelling microwave pyrolysis of oil palm fibre for hydrogen and biochar production. Asia-Pacific Journal of Chemical Engineering, 15(1).
Nelson, D.L., Cox, M.M., Lehninger, A.L. 2013. Lehninger principles of biochemistry. W.H. Freeman and Company, New York.
Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., Tredici, M.R. 2019. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42.
Oostwal, E., Straat, M., Biehl, M. 2021. Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation. Physica A: Statistical Mechanics and its Applications, 564.
Pagano, M., Hernando, H., Cueto, J., Cruz, P.L., Dufour, J., Moreno, I., Serrano, D.P. 2023. Insights on the acetic acid pretreatment of wheat straw: Changes induced in the biomass properties and benefits for the bio-oil production by pyrolysis. Chemical Engineering Journal, 454, 140206.
Pan, C.-M., Ma, H.-C., Fan, Y.-T., Hou, H.-W. 2011. Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. International Journal of Hydrogen Energy, 36(8), 4852-4862.
Pandis, N. 2015. Two-way analysis of variance: Part 1. American Journal of Orthodontics and Dentofacial Orthopedics, 148(6), 1078-1079.
Park, J.E., Lee, G.B., Kim, H., Hong, B.U. 2022. High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Processes, 10(7).
Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H. 2009. Product distribution from fast pyrolysis of glucose-based carbohydrates. Journal of Analytical and Applied Pyrolysis, 86(2), 323-330.
Permentier, K., Vercammen, S., Soetaert, S., Schellemans, C. 2017. Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department. International journal of emergency medicine, 10(1), 14-14.
Pradana, Y.S., Daniyanto, Hartono, M., Prasakti, L., Budiman, A. 2019. Effect of calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia, 158, 431-439.
Rago, Y.P., Surroop, D., Mohee, R. 2018. Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment. Bioresource Technology, 248, 258-264.
Rashid, T., Ali Ammar Taqvi, S., Sher, F., Rubab, S., Thanabalan, M., Bilal, M., ul Islam, B. 2021. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel, 293, 120485.
Refaat, A.A. 2011. Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science and Technology, 8(1), 203-221.
Rouder, J.N., Schnuerch, M., Haaf, J.M., Morey, R.D. 2022. Principles of model specification in ANOVA designs. Computational Brain & Behavior, 1-14.
Saidur, R., BoroumandJazi, G., Mekhilef, S., Mohammed, H.A. 2012. A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews, 16(2), 1217-1222.
Sakiewicz, P., Piotrowski, K., Kalisz, S. 2020. Neural network prediction of parameters of biomass ashes, reused within the circular economy frame. Renewable Energy, 162, 743-753.
Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., Smith, A.G. 2010. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol, 21(3), 277-86.
Selvakumar, P., Adane, A.A., Zelalem, T., Hunegnaw, B.M., Karthik, V., Kavitha, S., Jayakumar, M., Karmegam, N., Govarthanan, M., Kim, W. 2022. Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel, 321, 124060.
Sfakiotakis, S., Vamvuka, D. 2015. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresour Technol, 197, 434-42.
Shan, F., Fu, L., Chen, X., Xie, X., Liao, C., Zhu, Y., Xia, H., Zhang, J., Yan, L., Wang, Z., Yu, X. 2022. Waste-to-wealth: Functional biomass carbon dots based on bee pollen waste and application. Chinese Chemical Letters, 33(6), 2942-2948.
Shi, M., Zhang, R., Zhang, L., Shi, B. 2022. Effects of alkali and alkaline earth metal species on the combustion characteristics and synergistic effects: Sewage sludge and its blend with coal. Waste Management, 146, 119-129.
Siddiqui, M.T.H., Chan, F.L., Nizamuddin, S., Baloch, H.A., Kundu, S., Czajka, M., Griffin, G.J., Tanksale, A., Shah, K., Srinivasan, M. 2019. Comparative study of microwave and conventional solvothermal synthesis for magnetic carbon nanocomposites and bio-oil from rice husk. Journal of Environmental Chemical Engineering, 7(4), 103266.
Soka, O., Oyekola, O. 2020. A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon, 6(7), e04346.
Song, G., Shen, L., Xiao, J. 2011. Estimating Specific Chemical Exergy of Biomass from Basic Analysis Data. Industrial & Engineering Chemistry Research, 50(16), 9758-9766.
Song, G., Shen, L., Xiao, J., Chen, L. 2013. Estimation of Specific Enthalpy and Exergy of Biomass and Coal Ash. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(9), 809-816.
Souza, A.G.d., Santos, J.C.O., Conceição, M.M., Silva, M.C.D., Prasad, S. 2004. A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21, 265-273.
Suman, S., Kumar Rai, S., Kumar Singh, R., Bhushan, A., Kumar Rajak, D. 2022. Compositional Ligno-cellulosic behaviour of some residual biomass. Materials Today: Proceedings.
Sun, C., Xia, A., Liao, Q., Fu, Q., Huang, Y., Zhu, X., Wei, P., Lin, R., Murphy, J.D. 2018. Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios. Applied Energy, 230, 1082-1092.
Sun, X.-M., Xu, Y.-S., Huang, H. 2020. Thraustochytrid Cell Factories for Producing Lipid Compounds. Trends in Biotechnology.
Tang, C.-Y., Zhang, D.-X. 2016. Mechanisms of aliphatic hydrocarbon formation during co-pyrolysis of coal and cotton stalk. Chinese Chemical Letters, 27(10), 1607-1611.
Tang, D.Y.Y., Khoo, K.S., Chew, K.W., Tao, Y., Ho, S.H., Show, P.L. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol, 304, 122997.
Tejano, L.A., Peralta, J.P., Yap, E.E.S., Panjaitan, F.C.A., Chang, Y.W. 2019. Prediction of Bioactive Peptides from Chlorella sorokiniana Proteins Using Proteomic Techniques in Combination with Bioinformatics Analyses. Int J Mol Sci, 20(7).
Torquato, L.D.M., Crnkovic, P.M., Ribeiro, C.A., Crespi, M.S. 2016. New approach for proximate analysis by thermogravimetry using CO2 atmosphere. Journal of Thermal Analysis and Calorimetry, 128(1), 1-14.
Tosti, L., van Zomeren, A., Pels, J.R., Damgaard, A., Comans, R.N.J. 2020. Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of Cleaner Production, 245.
Trach, R., Trach, Y., Lendo-Siwicka, M. 2021. Using ANN to Predict the Impact of Communication Factors on the Rework Cost in Construction Projects. Energies, 14(14), 4376.
Tran, T.T.K., Lee, T., Kim, J.-S. 2020. Increasing Neurons or Deepening Layers in Forecasting Maximum Temperature Time Series? Atmosphere, 11(10).
Van Soest, P.J., Robertson, J.B., Lewis, B.A. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597.
Viju, D., Gautam, R., Vinu, R. 2018. Application of the distributed activation energy model to the kinetic study of pyrolysis of Nannochloropsis oculata. Algal Research, 35, 168-177.
Wang, K., Brown, R.C. 2013. Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chemistry, 15(3), 675-681.
Wang, M., Tsai, H.-S., Zhang, C., Wang, C., Ho, S.-H. 2022a. Effective purification of oily wastewater using lignocellulosic biomass: A review. Chinese Chemical Letters, 33(6), 2807-2816.
Wang, S., Zou, C., Lou, C., Yang, H., Pu, Y., Luo, J., Peng, C., Wang, C., Li, Z. 2022b. Influence of the synergistic effects between coal and hemicellulose/cellulose/lignin on the co-combustion of coal and lignocellulosic biomass. Fuel, 311, 122585.
Wang, X., Sheng, L., Yang, X. 2017. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresour Technol, 229, 119-125.
Wang, Z., Shao, S., Zhang, C., Lu, D., Ma, H., Ren, X. 2015. Pretreatment of vinegar residue and anaerobic sludge for enhanced hydrogen and methane production in the two-stage anaerobic system. International Journal of Hydrogen Energy, 40(13), 4494-4501.
Watson, J., Wang, T., Si, B., Chen, W.-T., Aierzhati, A., Zhang, Y. 2020. Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Progress in Energy and Combustion Science, 77.
Wu, Q., Jiang, L., Wang, Y., Dai, L., Liu, Y., Zou, R., Tian, X., Ke, L., Yang, X., Ruan, R. 2021. Pyrolysis of soybean soapstock for hydrocarbon bio-oil over a microwave-responsive catalyst in a series microwave system. Bioresource Technology, 341, 125800.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., Chen, Y. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268-276.
Wu, Z., Wang, S., Zhao, J., Chen, L., Meng, H. 2014. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresource Technology, 169, 220-228.
Xiao, C., Liao, Q., Fu, Q., Huang, Y., Chen, H., Zhang, H., Xia, A., Zhu, X., Reungsang, A., Liu, Z. 2019. A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Applied Energy, 236, 1011-1018.
Xiao, H.-m., Ma, X.-q., Lai, Z.-y. 2009. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Applied Energy, 86(9), 1741-1745.
Xiaoqing Zhang, Jacob Golding, Burgar, I. 2002. Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer, 43, 5791–5796.
Xing, J., Luo, K., Pitsch, H., Wang, H., Bai, Y., Zhao, C., Fan, J. 2019. Predicting kinetic parameters for coal devolatilization by means of Artificial Neural Networks. Proceedings of the Combustion Institute, 37(3), 2943-2950.
Xu, S., Hu, Y., Wang, S., He, Z., Qian, L., Feng, Y., Sun, C., Liu, X., Wang, Q., Hui, C., Payne, E.K. 2019a. Investigation on the co-pyrolysis mechanism of seaweed and rice husk with multi-method comprehensive study. Renewable Energy, 132, 266-277.
Xu, X., Tu, R., Sun, Y., Wu, Y., Jiang, E., Gong, Y., Li, Y. 2019b. The correlation of physicochemical properties and combustion performance of hydrochar with fixed carbon index. Bioresource Technology, 294, 122053.
Yang, Q., Li, H., Wang, D., Zhang, X., Guo, X., Pu, S., Guo, R., Chen, J. 2020. Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture. Applied Energy, 276, 115502.
Yu, D., Hu, S., Wang, L., Chen, Q., Dong, N. 2020. Comparative study on pyrolysis characteristics and kinetics of oleaginous yeast and algae. International Journal of Hydrogen Energy, 45(19), 10979-10990.
Yu, L.-Q., Wang, H., Chen, S.-L., Wen, T.-E., Huang, B.-C., Jin, R.-C. 2022. Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. Chinese Chemical Letters.
Yuan, T., Tahmasebi, A., Yu, J. 2015. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresour Technol, 175, 333-41.
Zhang, Y., Zhao, W., Li, B., Zhang, H., Jiang, B., Ke, C. 2016. Two equations for estimating the exergy of woody biomass based on the exergy of ash. Energy, 106, 400-407.
Zheng, Y., Wang, J., Liu, C., Lu, Y., Lin, X., Li, W., Zheng, Z. 2020. Catalytic copyrolysis of metal impregnated biomass and plastic with Ni‐based HZSM‐5 catalyst: Synergistic effects, kinetics and product distribution. International Journal of Energy Research, 44(7), 5917-5935.
Zhou, N., Zhou, J., Dai, L., Guo, F., Wang, Y., Li, H., Deng, W., Lei, H., Chen, P., Liu, Y., Ruan, R. 2020. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 314, 123756.
Zhu, G., Yang, L., Gao, Y., Xu, J., Chen, H., Zhu, Y., Wang, Y., Liao, C., Lu, C., Zhu, C. 2019. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA. Fuel, 244, 479-491.
Ziska, L.H. 2022. Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed. Plants, 11(7).