| 研究生: |
段明廷 Duan, Ming-Ting |
|---|---|
| 論文名稱: |
金屬平板與玻璃纖維強化塑膠平板承受暫態氣體震波負載之實驗與數值分析研究 Experimental and Numerical Studies of the Dynamic Response for the Metallic and GFRP Composite Plate Due to Supersonic Shock Wave Loading |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | MSC.Dytran 、複合材料平板 、金屬平板 、震波管 、震波 、LS-Dyna |
| 外文關鍵詞: | MSC.Dytran, LS-Dyna, shock wave, composite plate, metallic plate, shock tube |
| 相關次數: | 點閱:153 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用商用有限元素軟體MSC.Dytran和LS-Dyna來建構震波管與金屬平板和複合材料平板的有限元素模型,再將震波的初始條件、相關的材料性質等參數輸入,進而模擬震波衝擊金屬平板和複合材料平板的動態行為。並利用成功大學航太所震波實驗室的震波管以及結構實驗室的訊號處理器、示波器、應變規和高速攝影機等等儀器來進行實驗,量測金屬平板和複合材料平板之位移以及應變。將模擬的數值與實驗的數據做比對與驗證,驗證主要分成三大部份:1.震波驗證;2.震波馬赫數1.3~2.4衝擊金屬平板的應變值驗證和預測;3.震波馬赫數1.3~1.6衝擊複合材料平板之位移量與應變值驗證,最後再將驗證的結果作討論。在震波驗證方面,利用理論與商用有限元素軟體模擬比對驗證。透過驗證可以得知震波的物理現象,其模擬的結果與實驗、理論值都非常的相似。在震波馬赫數1.3~1.6衝擊金屬平板方面,實驗與模擬的結果趨勢上也都大致相同,近一步比對驗證,利用LS-Dyna模擬的結果比Dytran模擬的結果更為接近,利用MSC.Dytran和LS-Dyna預測震波馬赫數1.8~2.4衝擊金屬平板,也可以得到相似的結果。在震波馬赫數1.3 ~ 1.6衝擊複合材料平板的位移驗證,利用高速攝影機所量測到的實驗結果與LS-Dyna模擬的結果大致相同;而震波馬赫數1.3 ~ 1.6衝擊複合材料平板的應變驗證方面,比較實驗與模擬的第一個應變峰值,其結果也非常的接近。
This study deals with numerical 3D simulation, through the code MSC.Dytran and LS-Dyna of the effects caused by shock wave generated by shock tube on clamped-free-clamped-free rectangular plates made of metal and composites. Then we input the initial condition of high and low pressure section, material property of air and target plates to simulate the dynamic response of metallic and composite plate due to shock wave loading. For experiment, shock tube, signal conditioning amplifier, oscilloscope, strain gauge, and high speed camera are used to measure the displacement and strain of metallic and composite plate. The main output results of the simulations are presented and compared with the experiments preformed at the shock tube laboratory and structure laboratory, Institute of Aeronautics and Astronautics, National Cheng Kung University, Tianan, Taiwan. The verification apart from three parts:1. The shock wave. 2. The strain of metallic flat plate due to shock wave loading for Mach number 1.3 ~ 2.4. 3. The displacement and strain for composite plate due to shock wave loading for Mach number 1.3~1.6. For the verification of shock wave, the physical phenomena, incident pressure strength, shock wave velocity, and incident density ratio follow that the numerical simulations are in a good agreement with the experiments and analytical solution. The verification for 1 mm thickness copper plate due to shock wave loading for Mach number 1.3~1.6, the numerical simulations for y-strain are in a good agreement with the experiments. Further, the numerical result using LS-Dyna is more accurate than the numerical result using Dytran. The prediction for 1 mm thickness copper plate due to shock wave loading for Mach number 1.8~2.4, the Dytran simulations are in a good argreement with the LS-Dyna simulationa. The verification for glass fabric reinforced plate due to shock wave loading for Mach number 1.3~1.6, the numerical simulations for displacement and strain are in a good agreement with the experiments.
[1]G.Ben-Dor, and K. Takayama, “The phenomena of shock wave reflection – a review of unsolved problems and future research needs,” Shock waves, vol.2, pp.211-223, 1992.
[2]梁勝明,“體外震波碎石機關鍵技術研究”, 科學發展月刊, 第29卷, 第6期, pp. 397-403, 2001.
[3]倪勝火, 平形震測法與超震波法在實務上之應用與研究, 國立成功大學土木工程研究所碩士論文, 2006.
[4]鍾文泰, 車輛排氣管之流場與噪音分析, 國立成功大學航空太空工程學系博士論文, 2007.
[5]楊科之, 楊秀敏, “坑道內化爆炸衝擊波的傳播規律”, 爆炸與衝擊, vol.23, No.1, pp.37-40, 2003.
[6]R.E. Winter, S.S. Sorber, D.A. Salisbury, P.Taylor, R. Gustavsen, S. Sheffield, and R. Alcon, “Experimental study of the shock response of anHMX-Based explosive,” Shock waves, Vol.15, No.2, pp.89-101, 2006.
[7]G. Ben-Dor, Shock Wave Reflection Phenomena, Springer Verlag New York Inc., pp.41-53, 1992.
[8]吳忠慶, 平面震波與金屬板交互作用之探討, 國立成功大學航空太空工程學系碩士在職專班論文, 2007.
[9]鄧宇昇, 超音速震波衝擊金屬平板之動態響應分析研究, 國立成功大學航空太空工程學系碩士論文, 2007.
[10]何志傑, 平面震波通過橈性與剛性斜面之研究, 國立成功大學航空太空工程學系碩士在職專班論文, 2008.
[11]O.E. Kosing, F.S. Barbosa, and B.W. Skews, “A New, Friction Controlled, Piston Actuated Diaphragmless Shock Tube Drivers,” Shock Wave, vol.9, pp.69-72, 1999.
[12]F.Otomo, K. Ohtani, and K. Takayama, “Attenuation of shock waves propagation over arrayed baffle plate,” Shock Waves, vol.14, pp.379-390, 2005.
[13]M.K. Seitz, and B.W. Skews, “Effect of Compressible Foam Properties on Pressure Amplification during Shock Wave Impact,” Shock Wave, vol.15, pp. 177-197, 2006.
[14]C.P. Salisbury, D.S. Cronin, and F.S. Lin, “Investigation of the Arbitrary Largrangian Eulerian Formulation to Simulate Shock Tube Problem,” 8th International LS-DYNA User’s Conference, 2004.
[15]V. Admik, W.A. Trzcinski, and J. Vagenknecht, “Investigation of the Behavior of steel and Laminated Fabric Plates under Blast Wave Load,” ANSYS User’s Meeting, 2004.
[16]E. Carrera, V. Morello, D. Valletti, and F. Algostino, “Simulation of Shock Wave Impact Due to Explosion on a Flying Flexible Aircraft,” Combustion, Explosion, and Shock Waves, vol.43, No.6, pp.732-740, 2007.
[17]A. Rajamani and R. Prabhakaran, “Response of Composite Plates to Blast Loading,” Experimental Mechanics, pp.245-250, July 1980.
[18]J. LeBlanc, A. Shukla, C. Rousseau, and A. Bogdanovich, “Shock Loading of Three-dimensional Woven Composite Materials,” Composite Structure, vol.79, pp.344-355, 2007.
[19]S.A. Tekalur, A. E. Bogdanovich, and A. Shukla, “Shock Loading Response of Sandwich Panels with 3-D Woven E-glass Composites Skins and Stitched Foam Core,” Composite Science and Technology, pp.1-18, 2008.
[20]J.D. Anderson, Modern Compressible Flow, McGraw Hill, 4th edition, pp.65-102, 2004.
[21]G. Ben-Dor, O. Igar, and T. Elperin, Handbook of Shock Waves, Academic press, San Diego, pp.563-567, 2001.
[22]R.F. Gibson, Principle of Composite Material Mechanics, 2nd edition, Taylor & Francis Group, LLC, Boca Raton, pp91-118 and 274-290, 2007.
[23]T.W. Chou, Microstructural Design of Fiber Composite, Cambridge University Press, New York, pp302-318, 1992.
[24]MSC. Dytran Theory Manual, MSC software corporation, ver.2001.
[25]J. O. Hallquist, LS-Dyna Keyword User’s Manual, Livermore (Software Technology Corporation, Livermore, CA), ver. 971, 2007
[26]邱元升, 車用輪胎之動態滾動接觸行為與胎紋排水性研究, 國立成功大學航空太空工程學系碩士論文, 2008
[27]蘇帝龍, 1.5MW風車渦輪葉片之動態撞擊結構分析, 國立成功大學航空太空工程學系碩士在職專班論文, 2008.
[28]王振興, 震波管截面圖章引發震波繞射之研究, 國立成功大學航空太空工程學系碩士論文, 1993.
[29]M. D. Greenberg, Advanced Engineering Mathematics, 2nd edition, Prentice-Hall international, INC., New Jersey, pp.854, 1998.
[30]D.J. Gorman, Free Vibration Analysis of Rectangular Plates, Elservier, New York, 1982