研究生: |
張育誠 Chang, Yu-Cheng |
---|---|
論文名稱: |
奈米粒子表面之界面活性劑長度對奈米鈀粒子/團聯式共聚合物摻合系統型態的影響 Effect of the length of the polymer ligand on the morphology of polymer-coated Pd nanoparticles/block copolymer composite |
指導教授: |
羅介聰
Lo, Chieh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 鈀粒子 、團聯式共聚合物 、玻璃轉換溫度 、結構變化 、薄膜 |
外文關鍵詞: | palladium nanoparticle, diblock copolymer, glass transition temperature, morphology, thin film |
相關次數: | 點閱:73 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同分子量之聚苯乙烯硫醇化合物(thiol terminated polystyrene)與奈米鈀粒子(Pd)進行表面改質反應,再將改質後之鈀粒子與團聯式共聚合物poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP)以不同體積分率混合成複合材料,經由穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)及微差熱掃描卡計(DSC)的分析,得到複合材料的微相結構與玻璃轉換溫度(Tg)。
結果顯示團聯式共聚合物/鈀粒子奈米複合材料之結構與兩者之體積分率(vol%)有密切的關係。當鈀粒子以較低的體積分率存在於複合材料中,經由自組裝過程,鈀粒子分散於PS區域中,整體複合材料也具有規則性的結構;隨著鈀粒子體積分率增加,造成PS區域之有效體積分率提高,以及複合材料整體的能量變化,因而誘發材料結構進行轉變。其中發生結構變化的臨界體積分率與變化後的型態,受到鈀粒子直徑(鈀粒子核+PSSH殼層)與PS區域寬度之比值(d/D)影響,在相同的體積分率下,因粒子大小不同,粒子與共聚合物之間的作用亦會有所差異,對材料整體的能量有不同程度的影響。
當鈀粒子之粒徑與體積分率改變時,除了誘發材料的微相結構進行轉化,也會改變材料的Tg。d/D較低時,鈀粒子對PS區域具有膨潤效果,使得高分子鏈移動性上升而降低Tg;d/D提高後,鈀粒子對PS區域的膨潤效果減低,甚至因粒子與高分子鏈之間的作用力增加,使得複合材料之Tg提升到團聯式共聚合物的Tg之上。
將團聯式共聚合物/鈀粒子混成材料製備成薄膜後,暴露於氯仿蒸氣中進行solvent annealing,在相同annealing時間下,隨著溶劑總量增加,複合材料的表面結構由平坦轉變成柱狀結構後,再度變回平坦無特殊結構的表面。
Self-assembly of thiol terminated polystyrene (PSSH)-tethered Pd nanoparticles in diblock copolymer composed of poly(styrene-b-2vinyl pyridine) (PS-b-P2VP) as a function of particle concentration and the molecular weight of PSSH was investigated using transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). It was obtained that the morphology of PS-b-P2VP/Pd nanocomposites shows a strong function of particle concentration. With the addition of low volume fraction of Pd nanoparticles (Pd), particles self-assemble to the preferred domain of block copolymer, leading to well ordered nanostructure. As Pd increases, particles swell PS domain that induces an order-order transition. When Pd reaches to the critical concentration, additional particles cannot introduce to PS domain, causing an order-disorder transition. This critical concentration of Pd nanoparticles to induce an order-disorder transition depends on the ratio of the diameter of nanoparticles (Pd core and PSSH shell) to width of PS domain (d/D). With an increase in d/D, the critical concentration decreases. Furthermore, the addition of different concentration of Pd particles and the molecular weight of PSSH changes the Tg of PS-b-P2VP/Pd composites.
The surface morphology of PS-b-P2VP/Pd composite thin film during chloroform vapor annealing was also studied. With an increase in the amount of chloroform for annealing the composite with low Pd undergoes structural transition from featureless topography to hexagonally packed cylinders, and returned to featureless topography with time. In contrast the surface morphology of composite with higher Pd maintains featureless regardless of annealing time.
1. F. S. Bates, Science 1991, 251, 0898.
2. F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
3. Fasolka, M. J. Mayes, A. M. Annu Rev Mater Res. 2001, 31, 323.
4. M. F. Schulz, A. K. Khandpur, F. S. Bates, K. Almdal; K. Mortensen,
D. A. Hajduc; S. M. Gruner, Macromolecules 1996, 29, 2857.
5. M. Antoniett, S. Forsteer, M.A. Micha, S. Oestreich, Acta Polymer
48, 262.
6. M. A. El-Sayed, Acc. Chem. Rev. 2001, 34, 257.
7. R. Shenhar, T. B. Norsten, V. M. Rotello, Adv. Mater. 2005, 17, 657.
8. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, Chem. Soc,
Chem. Commun. 1995, 1655.
9. A. C. Templeton, M. P. Wuelfing, R. W. Murray, Acc. Chem. Res.
2000, 33, 27.
10. T. Trindade, P. O’Brien, N. L. Pickett, Chem. Mater. 2001, 13, 3843.
11. C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci.
2000, 30, 545.
12. R. B. Grubbs, Polym. Chem. 2005, 43, 4323.
13. R. Glass, M. Moeller, J. P. Spatz, Nanotechnology 2003, 14, 1153.
14. B. J. Kim, G. H. Fredrickson, E. J. Kramer, Macromolecules 2008,
41, 436.
15. B. J. Kim, J. Bang, C. J. Hawker, E. J. Kramer, Macromolecules
2006, 39, 4108.
16. B. J. Kim, J. Bang, C. J. Hawker, J. J. Chiu, E. J. Kramer,
Macromolecules 2007, 23, 12693.
17. R. B. Thompson, V. V. Ginzburg, A. C. Balazs, Science 2001, 292,
2469.
18. R. B. Thompson, J. Y. Lee, D. Jasnow, A. C. Balazs, Physical review
E 2002, 66, 031801.
19. J. Huh, V. V. Ginzburg, A. C. Balazs, Macromolecules 2000, 33, 8085.
20. H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules 1991, 24,
240.
21. C. T. Lo, B. Lee, V. G. Pol, N. L. Dietz Rago, S. Seifert, R. E. Winans,
P. Thiyagarajan, Macromolecules 2007, 40, 8302.
22. B. J. Kim, J. J. Chiu, G. R. Yi, D. J. Pine, E. J. Kramer, Adv. Mater.
2005, 17, 2618.
23. B. J. Kim, G. H. Fredricson, C. J. Hawker, J. J. Chiu, E. J. Kramer,
Langmuir 2007, 23, 7804.
24. E. Helfand, Z. R. Wasserman, Macromolecules 1978, 11, 960.
25. E. Helfand, Z. R. Wasserman, Macromolecules 1980, 13, 994.
26. K. A. Khandpur, S. Farster, F. S. Bates, Macromolecules 1995, 28,
8796.
27. S. Sakurai, Reviews, 1995, 3, 90.
28. T. P. Lodge, Macromol. Chem. Phys. 2003, 204, 256.
29. F. Stephan, Top Curr. Chem. 2003, 226, 1.
30. L. Leibler, Macromolecules 1980, 13, 1602.
31. M. W. Masten, F. S Bates, Macromolecules, 1996, 29, 1901.
32. J. D. Vavasour, M. D. Whitemore, Macromolecules 1992, 25, 5477.
33. K. I. Winey, E. L. Thomas, L. J. Fetters, Macromolecules 1992, 25,
2645.
34. Y. Wang, U. Gsele, M. Steinhart, Nano Lett. 2008, 8, 3548.
35. C. Xu, K. Ohno, V. Ladmiral, R. J. Composto, Polymer 2008, 49,
3568.
36. Q. Li, J. He, E. Glogowski, X. Li, J. Wang, T. Emrick, T. P. Russell,
Adv. Mater. 2008, 20, 1462.
37. R. J. Spontak, S. D. Smith, A. Ashraf, Macromolecules 1993, 26,
5118.
38. L. He, L. Zhang, H. Chen, H. Liang, Polymer 2009, 50, 3403.
39. S. Hu, W. J. Brittain, S. Jacobson, A. C. Balazs, European Polymer
Journal 2006, 42, 2045.
40. S. Maria, A. S. Susha, M. Sommer, D. V. Talapin, A. L. Rogach, M.
Thelakkat, Macromolecules 2008, 41, 6081.
41. B. H. Sohn, S. H. Yun, Polymer 2002, 43, 2507.
42. T. Xu, H. C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin,
C. M. Stafford, T. P. Russel, Polymer 2001, 42, 9091.
43. G. Kim, M. Libera, Macromolecules 1998, 31, 2569.
44. H. Wang, A. B. Djurisic, M. H. Xie, W. K. Chan, O. Kutsay, Thin
Solid Films 2005, 488, 329.
45. G. Krausch, R. Magerle, Adv. Mater. 2002, 14, 1579.
46. J. Zhao, S. Jiang, X. Ji, L. An, B. Jiang, Polymer 2005, 46, 6513.
47. G. J. Fleer, T. Cosgrove, B. Vincent, Polymers at Interfaces 1993.
48. W. Meesiri, J. Menczel, U. Guar, B. Wunderlich, J. Polym. Sci.
Polym. Phys. Ed. 1982, 20, 719.
49. T. G. Fox, P. J. Flory, J. Appl. Phys. 1950, 21, 581.
50. T. G. Fox, Bull. Am. Phys. Soc. 1956, 1, 123.
51. Hisash Odani, Masaki Uchikura, Yukimasa Ogino, Michio Kurata,
Bull. Inst. Chem. Res. 1985, 63, 332.
52. G. M. Bristow, W. F. Watson, Trans. Faraday Soc. 1985, 54, 1731.
53. C. J. Malm, C. R. Fordyce, H. A. Tanner, Ind. Eng. Chem. 1942, 34,
430.
54. R. Kravchenko, R. M. Waymouth, Macromolecules 1998, 31, 1.
55. K. R. Shull, E. J. Kramer, G. Hadziioannou,W. Tang,
Macromolecules 1990, 23, 4780.
56. C. Xu, K. Ohno, V. Ladmiral, R. J. Composto, Polymer 2008, 49,
3568.
57. H. K. Jeon, J. K. Kin, Macromolecules 1998, 31, 9273.
58. A. J. Schultz, C. K. Hall, J. Genzer, Macromolecules 2005, 38, 3007.
59. V. Thirtha, R. Lehman, T. Nosker, be submitted to Journal of Applied
Polymer Science(2006).
60. Chia-Hung Lin, Yi-Chih Tung, J. Ruokolainen, R. Mezzenga,
Wen-Chang Chen, Macromolecules 2008, 41, 8759.
61. B. Lee, P. Thiyagarajan, S. Narayanan, A. Sandy, V. Pol, C. T. Lo, D.
Bohnsack, be submitted to Journal of Phys. Rev. Lett.
62. X. Li, J. Peng, Y. Wen, D. H. Kim, W. Knoll, Polymer 2007, 48,
2434.
63. K. J. Hanley, T. P. Lodge, J. Polym. Sci., Polym. Phys. Ed. 1998, 36,
3101.
64. M. D. Whitmore, J. Noolandi, J. Chem. Phys. 1990, 93, 2946.