| 研究生: |
毛皖亭 Mao, Wan-ting |
|---|---|
| 論文名稱: |
線上動態車輛巡迴路線演算法之發展:滾動平面法之應用 Development of On-line Dynamic Vehicle Routing Algorithms: A Rolling Horizon Approach |
| 指導教授: |
胡大瀛
Hu, Ta-yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 動態交通模擬指派軟體DynaTAIWAN 、滾動平面法 、禁制搜尋法 、線上型車輛巡迴路線問題 |
| 外文關鍵詞: | Tabu Search algorithm, Online VRP, DynaTAIWAN, Rolling Horizon Approach |
| 相關次數: | 點閱:107 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今物流業日益蓬勃發展,在其營運成本之中,運輸成本在整體物流成本中佔有非常高的比例,且為花費最多之物流營運項目;因此若能合理而有效降低運輸成本,相對來說也就是可以增加企業的營利收入。此外,近年來科技日益發達,隨著智慧型運輸系統大力推動,透過應用相關先進的電子、通信、資訊等技術,物流業者可透過相關設備取得運送貨物之商用車輛所在位置、即時交通路況資訊以及即時的顧客需求情況等資訊,進而對派遣車隊做即時的路線改善,或調整原先規劃之車輛派遣計畫,使其運輸成本降低,並對其顧客提供更快速、有效率之服務。
在研究車輛巡迴路線問題上,近年來逐漸由傳統的靜態問題演進到可利用即時資訊的動態問題,更進一步擴展成即時的線上型問題。由於車輛巡迴路線問題具有NP-Hard之特性,使用數學規劃方法將無法在有限的時間之內求解較大規模之問題,而啟發式演算法可因應求解問題之內容,在有限之時效內求解出一可接受解,因此現今一般多採用啟發式演算法來求解車輛巡迴路線相關問題。
線上型動態車輛巡迴路線問題主要探討在獲得即時資訊後,或是即時顧客需求產生或取消之車輛巡迴路線改變的情況,較傳統的車輛巡迴路線問題能反應出現實生活中之情況,故本研究擬採用一改良式的掃描法-Petals演算法來進行商用車輛初始路線構建,並使用一巨集啟發式演算法禁制搜尋法來進行車輛路線更新改善,且由於滾動平面法具有可即時反應當時現況之特性,因此本研究所使用之演算法建立在一滾動平面法概念之架構下,以期能達到即時反應現況之目的;並利用交通模擬指派模式(DynaTAIWAN)在一虛擬50節點路網以及一真實台南市路網進行模擬,來觀察本研究所發展之演算法對於商用車輛路徑指派所帶來之影響。
As the development of logistics, transportation and/or delivering cost, which accounts for substantial proportion of overall cost, could be reduced to enhance the competitiveness of the enterprise. Due to the advancement of Intelligent Transportation Systems (ITS), dispatching centers can get real-time information, real-time requests, and commercial vehicle routes according to electron, communication, and real-time information technology. The application of ITS technologies can improve deliver/pick-up services; however, the critical question is how to solve the Online Vehicle Routing Problems (Online VRP) under real-time information and real-time requests.
The Vehicle Routing Problems, one of the NP-hard problems, cannot not be solved efficiently by mathematical programming techniques. Although the heuristic approaches do not guarantee to obtain the optimal solution, they can solve the VRP problem more efficiently.
Online VRP consider realistic issues, such as real-time traffic conditions and new requests. This research proposes a heuristic approach to resolve on-line issues, such as real-time travel cost and real-time requests. In the heuristic approach, the Petals method is deployed to build the initial route for commercial vehicle, and the Tabu Search is used to update routes. In order to consider possible new requests, a rolling-horizon approach is implemented to react to real situations. Numerical experiments based on DynaTAIWAN are conducted for a test network and a real network- Tainan City network to illustrate the proposed algorithm.
‧柯景文 (2002),禁制搜尋法於動態巡迴路線問題之研究,逢甲大學交通工程與管理研究所碩士論文。
‧胡大瀛等(2004),區域級智慧型運輸系統示範計畫-核心交通分析與預測系統(第一年期),交通部運輸研究所。
‧陳勝男 (1996),禁忌搜尋法應用於車輛路線問題之研究,大葉大學工業工程研究所碩士論文。
‧陳德政 (2005),即時資訊下物流配送問題之研究,逢甲大學交通工程與管理研究所碩士論文。
‧敖君瑋 (1999),禁忌搜尋法於軟性時窗限制之車輛途程問題研究,元智大學工業工程研究所碩士論文。
‧梅明德 (1998),線上型時窗限制車輛路線問題之模式與求解演算法,國立中央大學土木工程研究所博士論文。
‧郭欣華 (2006),即時資訊下車隊管理問題之研究,國立成功大學交通管理科學系碩士論文。
‧統一超商7-ELEVEN官方網頁,http://www.7-11.com.tw/。
‧統一集團官方網頁,http://www.uni-president.com.tw/。
‧黃冠雄 (2002),時效導向的娃娃車接送之車輛途程問題-以禁忌搜尋法求解,國立中正大學數學研究所碩士論文。
‧廖亮富 (1997),含時窗限制多部車車輛途程問題解算之研究,元智大學工業工程研究所碩士論文。
‧Boctor, F. F., Renaud, J. and Laporte, G. (1996), “An improved petal heuristic for the vehicle routing problem,” Journal of the Operational Research Society, Vol. 47, pp. 329-336.
‧Chen, H.K., Hsueh, C.F., and Chang, M.S. (2005), “The real-time time-dependent vehicle routing problem,” Submitted to Transportation Research Part E.
‧Chopra, S., and Meindl, P. (2001), “Supply Chain Management,” Prentice-Hall, pp.457.
‧Clarke, G. and Wright, J.W. (1964), “Scheduling of vehicles from a central depot to a number of delivery points,” Operations Research, Vol. 12, pp. 568-581.
‧Coyle, J. J., Bardi, E.J., and Langley, C.J. (2003), “The Management of Business Logistics-A Supply Chain Perspective,” Thomson Learning, pp.14.
‧Gendreau, M., Hertz, A. and Laporte, G. (1992), “New Insertion and Post optimizatioin Procedures for the Traveling Salesman Problem,” Operations Research, Vol.40, No.6, pp.1086-1094.
‧Gendreau, M., Laporte, G., Musaraganyi, C., and Taillard, E.D. (1999), “A tabu search heuristic for the heterogeneous fleet vehicle routing problem,” Computers & Operations Research, 26, pp.1153-1173.
‧Ghiani, G., Guerriero, F., Laporte, G. and Musmanno, R. (2003), “Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies,” European Journal of Operational Research, pp.151, 1-11.
‧Gillett, B. and Miller, L. (1974), “A heuristic algorithm for the vehicle dispatch problem,” Operations Research, Vol. 22, pp. 340-349.
‧Glover, F. (1986), “Future Paths for Integer Programming and Links to Artificial Intelligence,” Computers & Operations Research, Vol.13, pp.533-549.
‧Lin, S. (1965), “Computer Solutions of the Traveling Salesman Problem,” The Bell System Technical Journal, Dec., pp. 2245-2269.
‧Lin, S. and Kernighan, B.W. (1973), “An Effective Heuristic Algorithm for the Traveling Salesman Problem,” Operations Research, Vol.21, pp. 498-516.
‧Mahmassani, H. S., Jaillet, P., and Yang, J. (1999), “On-line algorithms for truck fleet assignment and scheduling under real-time information,” Transportation Research Board 78th Annual Meeting.
‧Mitrović-Minić, S., Krishnamurti, R., and Laporte, G. (2004), “The double-horizon heuristic for the dynamic pickup and delivery problem with time windows,” Transportation Research Part B, 38, pp669-685.
‧Osman, I. H. (1991), “Metastrategy simulated annealing and tabu search algorithms for combinatorial optimization problem,” Ph.D. Dissertation, The Management School, Imperial Collage, London.
‧Osman, I. H. (1993), “Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem,” Annals of Operations Research, 41:421–451.
‧Psaraftis, H. N. (1988), “Dynamic Vehicle Routing Problems,” in Golden, B.L. and A.A. Assad (eds), Vehicle Routing: Methods and Studies, Elsevier (North-Holland), Amsterdam.
‧Psaraftis, H.N. (1995), “Dynamic vehicle routing: Status and prospect,” Annals of Operations Research, 61, pp.143-164.
‧Renaud, J., Boctor, F.F., and Laporte, G. (1996), “An Improved Petal Heuristic for the Vehicle Routing Problem,” Journal of the Operational Research Society, Vol. 47, pp. 329-336.
‧Rosenkrantz, D., Sterns, R. and Lewis, P. (1977), “An Analysis of Several Heuristics for the Traveling Salesman Problem,” SIAM Journal of Computing, Vol. 6, pp. 563-581.
‧Sgall, J, (1996), “Randomized online scheduling of parallel jobs,” Journal of Algorithms, Vol. 21, No. 1, pp. 149-175.
‧Sleator, D. D. and Tarjan, R. E., (1985), “Amortized efficiency of list update and paging rules,” Communications of the ACM, Vol. 28, No. 2, pp. 202-208.