簡易檢索 / 詳目顯示

研究生: 鍾旻辰
Chung, Min-Chen
論文名稱: 奈米級氧化鉍之合成與光催化分解水產氫研究
Synthesis of Nano-sized Bi2O3 and photocatalytic water splitting for Hydrogen Production
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 氧化鉍光催化光分解水產氫
外文關鍵詞: bismuth oxide, photocatalysis,, photo-splitting of water, hydrogen production
相關次數: 點閱:54下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bi2O3為低能隙半導體材料,近年來開始受到廣泛的注意應用作為可見光驅動光催化劑。為有效提升光催化效率,本研究致力於開發奈米尺度之Bi2O3。本研究的第一部分選用水熱法合成Bi2O3,調整沉澱劑尿素濃度、 [Bi3+]濃度,熱處理溫度等參數,分析所得產物之相組成與製程參數之關係,實驗結果顯示添加分散劑PVP可抑制晶粒成長,水熱所得產物為100 nm、單一粒徑分佈之球形粒子,經熱處理320ºC與400ºC可分別獲得-Bi2O3 與-Bi2O3。本研究的第二部分則選用光催化降解染料效率較高之-Bi2O3進行深入研究,使用水熱法以及常溫化學沈澱法製成不同形貌之α-Bi2O3,並以球磨進行將之研磨至奈米尺寸。探討-Bi2O3晶體形貌及比表面積、特定晶面以及能帶結構等材料特性,對於光催化降解甲基橙(MO),以及光催化產氫效率的影響。實驗結果證實,α-Bi2O3(2 0 0)面之價帶具有較高的載子移動力,有利於光催化反應的進行,以常溫化學沈澱法、並經球磨48小時所得的α-Bi2O3,因具有較高比例的(2 0 0)晶面,以及高反應表面積,具有最高的光降解甲基橙染料效率及產氫率,產氫率更高達498 μmol g-1 h-1。

    In this study, the hydrothermal method and the chemical precipitation method at room temperature were used to synthesize α-Bi2O3 with different morphologies, and the grains were reduced to nano-scale by ball milling. The absorption bands of α-Bi2O3 in the two processes are all in the visible light range. The XRD analysis results confirm that the needle columnar α-Bi2O3 prepared by the chemical precipitation method at room temperature retains a relatively high proportion of (2 0 0) crystal planes before and after ball milling. In this study, the effects of specific surface area and specific crystal planes on the photocatalytic degradation of methyl orange (MO) and the photocatalytic hydrogen production efficiency were compared. The energy of α-Bi2O3 on the (2 0 0) and (1 2 0) planes was calculated by density functional theory. The density of states distribution and band structure. Combined with the experimental and theoretical research results, it is confirmed that the valence electrons on the α-Bi2O3 (200) surface have higher carrier mobility, which benefits the photocatalytic reaction. The α-Bi2O3 obtained by the chemical precipitation method at room temperature has a higher proportion of (200) crystal planes. After the surface area of the reaction is increased by ball milling, it has the highest photodegradable MO dye, and its hydrogen production rate is as high as 498 μmol g-1 h-1.

    摘要 I Abstract II 致謝 XVIII 目錄 XX 表目錄 XXII 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 氧化鉍 3 2.2 Bi2O3合成 5 2.2.1 α-Bi2O3 5 2.2.2 β-Bi2O3 6 2.2.3 γ-Bi2O3 7 2.2.4 δ-Bi2O3 7 2.3 光催化反應 8 2.3.1 晶面影響 8 2.4 光觸媒應用 10 2.4.1 光催化降解染料 10 第三章 研究方法與步驟 12 3.1 實驗藥品 12 3.2 光觸媒合成 13 3.2.1 水熱法合成Bi2O3 13 3.2.1 常溫化學沉澱法合成Bi2O3 14 3.3 光催化實驗 15 3.3.1 光催化染料降解實驗 15 3.3.2 產氫實驗 16 3.4 光觸媒材料性質分析 16 3.4.1 X-ray粉末繞射分析(X-ray Diffraction,XRD) 16 3.4.2 掃描式電子顯微鏡 17 3.4.3 穿透式電子顯微鏡 17 3.4.4 比表面積分析儀 18 3.4.6 紫外可見光分光光譜儀 19 3.4.7 X光電子能譜儀 ( X-ray Photoelectron Spectrometer, XPS ) 19 3.4.8 表面凱爾文探針掃描光譜儀與光電子能譜儀 20 3.4.9 氣相層析儀 20 第四章 結果與討論 21 4.1 以水熱法合成β-Bi2O3 21 4.1.1 分散劑PVP 21 4.1.2 [Bi3+]濃度 22 4.1.3 吸收光譜與光催化染料降解 25 4.2 水熱法合成α-Bi2O3 29 4.2.1 水熱產物之相轉換 29 4.2.2 球磨處理 32 4.2.3 光催化效率初步測試 34 4.3 化學沉澱法合成α-Bi2O3 35 4.3.1 球磨處理 37 4.3.2 吸收光譜與光催化染料降解 43 4.3.3光催化產氫實驗 47 4.4 α-Bi2O3光催化染料降解及產氫反應機制 49 4.4.1 光催化降解染料機制討論 49 4.4.2 產氫機制討論 55 第五章 結論 60 參考文獻 62

    [1] Yuan, J.; Zhou, S.; Wu, L.; You, B. (2006). Organic Pigment Particles Coated with Titania via Sol-Gel Process. The Journal of Physical Chemistry B, 110, 388-394.
    [2] Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.;. Kubota, Y.; Fujishima,A. (2002). Multicolour photochromism of TiO2 films loaded with silver nanoparticles . Nature Materials, 2, 29-31.
    [3] Lee, S.; Cho, I.S.; Lee, J.H.; Kim, D.H.; Kim, D.W.; Kim, J.Y.; Shin, H.; Lee, J.K.; Jung, H.S.; Park, N.G. (2010). Two-Step Sol-Gel Method-Based TiO2 Nanoparticles with Uniform. Chemistry of Materials, 22, 1958-1965.
    [4] Zhang, T.; Zeng, X.; Xia, Y.; Zhang, H.; Sun, B.; Wang, H. & Zhao, Y. (2019). Morphology evolution and photocatalytic applications of W-doped Bi2O3 films prepared using unique oblique angle co-sputtering technology. Ceramics International, 45, 21968-21974.
    [5] Hou, J.G.; Yang, C.; Wang, Z. (2013). Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {0 0 1} facets on graphene sheets for enhanced visible-light photocatalytic performance. Applied Catalysis B: Environmental, 129, 333-341.
    [6] Yin, L.F.; Niu, J.F.; Yao, S.Z.; Sun, Y. (2011). The electron structure and photocatalytic activity of Ti(IV) doped Bi2O3. Science China Chemistry, 54, 180-185.
    [7] Tang, J.W.; Zou, Z.G.; Ye, J.H. (2007). Efficient Photocatalysis on BaBiO3 Driven by Visible Light. The Journal of Physical Chemistry C, 111, 12779-12785.
    [8] Payne, D.J.; Egdell, R.G.; Walsh, A.; Watson, G.W.; Guo, J.; Glans, P.A.; Learmonth, T.; Smith, K.E. (2006). Electronic Origins of Structural Distortions in Post-Transition Metal Oxides: Experimental and Theoretical Evidence for a Revision of the Lone Pair Model. Physical Review Letters, 96, 157403.
    [9] Mauvy, J. C.; Launay; J. D. (2005). Synthesis, crystal structures and ioniconductivities of Bi14P4O31 and Bi50V4O85. Two members of the series Bi18-4mM4mO27+4m (M =P, V) related to the fluorite-type structure. Journal of Solid State Chemistry, 178, 2015-2023.
    [10] Zhou, D.; Wang, H.; Pang, L. X.; Randall, C. A. & Yao, X. (2009). Bi2O3–MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric. Journal of the American Ceramic Society, 92, 2242-2246.
    [11] Sammes, N. M.; Tompsett, G. A.; Nafe, H.; Aldinger, F. (1999). Bismuth based Oxide Electrolytes-Structure and Ionic Conductivity, ” Journal of the European Ceramic Society, 19, 1801-1826.
    [12] Maeder, T. (2013). Review of Bi2O3 based glasses for electronics and related applications. International Materials Reviews, 58, 3-40.
    [13] A. Cabot; A. Marsal; J. Arbiol; J. R. Morante, (2004). Bi2O3 as a selective sensing material for NO detection. Sensors and Actuators B, 99, 74-89
    [14] Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H.; Chen, R. (2012). Template‐free fabrication of Bi2O3 and (BiO) 2CO3 nanotubes and their application in water treatment. Chemistry–A European Journal, 18, 16491-16497.
    [15] Hu, L.; Zhang, G.; Liu, M.; Wang, Q.; Dong, S.; & Wang, P. (2019). Application
    of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation. Science of the total environment, 647, 352-361.
    [16] Vega-Mendoza, M.S.;. Luévano-Hipólito, E.; Leticia, M.T.M. (2021). Design and fabrication of photocatalytic coatings with α/β-Bi2O3 and recycled-fly ash for environmental remediation and solar fuel generation. Ceramics International, 47, 26907-26918.
    [17] Wu, G.; Zhao, Y.; Zhao, J. (2022). Facile synthesis of novel round-cake-like α-Bi2O3 hierarchic photocatalytic activity. Materials Research Express, 4, 035039.
    [18] Sammes, N. M.; Tompsett, G. A.; Nafe, H.; Aldinger, F. (1999). Bismuth based Oxide Electrolytes-Structure and Ionic Conductivity. Journal of the European Ceramic Society, 19, 1801-1826.
    [19] Huang, Y.J.; Zheng, Y.Q.; Zhu, H.L.; Wang, Y.Y. (2016). Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi2O3 for photocatalytic degradation. Journal of Solid State Chemistry, 239, 274-281.
    [20] Ai, Zhihui.; Huang, Y.; Lee, S.; Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509, 2044-2049.
    [21] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 4, 035039.
    [22] Wu, C.; Shen, L.; Huang, Q.; Zhang, Y. C. (2011). Hydrothermal synthesis and characterization of Bi2O3 nanowires. Materials Letters, 65, 1134-1136.
    [23] Xiong, Y.; Wu, M.; Ye, J.; Chen, Q.(2008). Synthesis and luminescence properties of hand-like α-Bi2O3 microcrystals. Materials Letters, 62, 1665-1668.
    [24] Gou, X.; Li, R.; Wang, G.; Chen, Z.; Wexler, D. (2009). Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology
    , 20, 495510.
    [25] Wu, Y.C.; Chaing, Y.C.; Huang, C.Y.; Wang, S.F.; Yang, H.Y. (2013). Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance. Dyes and Pigments, 98, 25-30.
    [26] Gotić, M.; Popović, S.; Musić, S. (2007). Influence of synthesis procedure on the morphology of bismuth oxide particles. Materials letters, 61, 709-714.
    [27] Monnereau, O.; Tortet, L.; Llewellyn, P.; Rouquerol, F.; Vacquier, G. (2003). Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide. Solid State Ionics, 157, 163-169.
    [28] Kumari, L.; Lin, J. H.; Ma, Y. R. (2007). Synthesis of bismuth oxide nanostructures by an oxidative metal vapour phase deposition technique. Nanotechnology, 18, 295605.
    [29] Wang, Y.; Cui, Z.; Xue, Y.; Zhang, R.; Yan, A. (2019). Size-Dependent Thermodynamic Properties of Two Types of Phase Transitions of Nano-Bi2O3 and Their Differences. Journal of Physical Chemistry, 123, 19135−19141.
    [30] Xu, L.; Lin, Y.G.; Qin, Y.; Xu, Z.; Liu, F.(2022). Adsorption-induced chemical reaction for in situ immobilization of radioactive anions on pristine β-Bi2O3 microflowers. Separation and Purification Technology, 292, 121045.
    [31] Ma, H.; Yang, S.; Li, M.; Tang, X.; Xia, Z.; Dai, R.(2021). Preparation and photocatalytic antibacterial mechanism of porous metastable β-Bi2O3 nanosheets. Ceramics International, 47, 34092-34105.
    [32] Jung, H. J.; Park, S.; Kim, K. D.; Kim, T. H.; Choi, M. Y.; Lee, K. Y. (2018). Fabrication of porous β-Bi2O3 nanoplates by phase transformation of bismuth precursor via low-temperature thermal decomposition process and their enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 550, 37-45.
    [33] Bang, J. H.; Choi, M. S.; Mirzaei, A.; Kwon, Y. J.; Kim, S. S.; Kim, T. W.; Kim, H. W. (2018). Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires. Sensors and Actuators B: Chemical, 274, 356-369.
    [34] Qiu, Y.; Fan, H.; Chang, X.; Dang, H.; Luo, Q.; Cheng, Z. (2018). Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Applied Surface Science, 434, 16-20.
    [35] Gurunathan, K. (2004). Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles. International Journal of Hydrogen Energy, 29, 933-940.
    [36] Hosseini, S. M.; Alemi, A.; Rezvani, Z. (2015). Preparation and Study of Bismuth Oxide Doped and co-Doped with Cobalt (III) and Holmium (III) via Sol-Gel Method. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 34, 53-59.
    [37] Turkoglu, O.; Belenli, I. (2003). Electrical conductivity of g-Bi2O3-V2O5 solid solution. Journal of thermal analysis and calorimetry, 73, 1001-1012.
    [38] Li, K.; Li, S.; Zhang, J.; Feng, Z.; Li, C. (2017). Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Materials Research Express, 4, 065902.
    [39]Hao, W.; Gao, Y.; Jing, X.; Zou, W.; Chen, Y. & Wang, T. (2014). Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies. Journal of Materials Science & Technology, 30, 192-196.
    [40]Han, M.; Sun, T.; Tan, P. Y.; Chen, X.; Tan, O. K.; Tse, M. S. (2013). m-BiVO4@ γ-Bi2O3 core–shell p–n heterogeneous nanostructure for enhanced visible-
    light photocatalytic performance. Rsc Advances, 3, 24964-24970.
    [41] Takahashi, T.; Iwahara, H.(1978). A review with 19 refs. on oxide ion conductive solid electrolytes based on Bi2O3. These electrolytes are characterized by conductivities more than 10 times those of conventional oxide ion conductors such as stabilized zirconias. Materials Research Bulletin, 13, 1447.
    [42] Switzer, J.A.; Shumsky, M.G.; Bohannan, E.W. (1999). Electrodeposited Ceramic Single Crystals. Science, 284, 293.
    [43] Fruth, V.; Popa, M.; Berger, D.; Ionica, C.M.; Jitianu M. (2004). Phases investigation in the antimony doped Bi2O3 system. Journal of the European Ceramic Society, 24, 1295-1299.
    [44] Sammes, N.M.; Tompsett, G.A.; Näfe, H.; Aldinger, F.(1999). Bismuth based oxide electrolytes— structure and ionic conductivity. Journal of the European Ceramic Society, 19, 1801-1826.
    [45] Gao, X.; Xu, K.; He, H.; Liu, S.; Zhao, X. (2022). Oxygen vacancies – Cu doping junction control of δ-Bi2O3 nanosheets for enhanced photocatalytic nitrogen fixation. Journal of Industrial and Engineering Chemistry, 3, 45.
    [46] Wu, Y. C.; Huang, Y. T.; Yang, H. Y. (2016). Crystallization mechanism and photocatalytic performance of vanadium-modified bismuth oxide through precipitation processes at room temperature. CrystEngComm journal, 18, 6881-6888.
    [47] Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. (2009). Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chemistry–A European Journal, 15, 1776-1782.
    [48] Sudrajat, H. & Hartuti, S. (2019). Boosting electron population in δ-Bi2O3 through iron doping for improved photocatalytic activity. Advanced Powder Technology, 30, 983-991.
    [49] Medina, J. C.; Bizarro, M.; Silva-Bermudez, P.; Giorcelli, M.; Tagliaferro, A.; Rodil, S. E. (2016). Photocatalytic discoloration of methyl orange dye by δ-Bi2O3 thin films. Thin Solid Films, 612, 72-81.
    [50] Tan, M. Y.; Tan, K. B.; Zainal, Z.; Khaw, C. C.; Chen, S. K. (2012). Subsolidus formation and impedance spectroscopy studies of materials in the (Bi2O3) 1−x(Y2O3) binary system. Ceramics International, 38, 3403-3409.
    [51] Bai, S.; Wang, L.; Li, Z.; Xiong, Y. (2016). Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Advanced Science, 4, 1600216.
    [52] Zhang, L.; Shi, Y.; Wang, Z.; Hu, C.; Shi, B.; Cao, X. (2019). Porous β-Bi2O3 with multiple vacancy associates on highly exposed active {220} facets for enhanced photocatalytic activity. Applied Catalysis B, 265, 118563.
    [53] Lei, B.; Cui, W.; Sheng, J.; Wang, H.; Chen, P.; Li, J.; Sun Y.; Dong, F. (2020). Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway Science Bulletin, 2020, 65, 467-476.
    [54] Zhang, J.; Dang, W.; Yan, X.; Li, M.; Gao, H.; Ao, Z.(2014). Doping indium in β-Bi2O3 to tune the electronic structure and improve the photocatalytic activities: first-principles calculations and experimental investigation. Physical Chemistry Chemical Physics, 16, 23476-23482.
    [55] Iyyapushpam, S.; Nishanthi, S.T.; Pathinettam Padiyan, D. (2013) Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. The Journal of Alloys and Compounds, 563, 104-107.
    [56] Cheng, H.; Huang, B.; Lu, J.; Wang, Z.; Xu, B.; Qin, X.; Zhang, X.; Dai,Y. (2010). Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Physical Chemistry Chemical Physics, 12, 15468-15475.
    [57] Yan, Y.; Zhou, Z.; Cheng, Y.; Qiu, L.; Gao, C.; Zhou, J. (2014). Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification. Journal of Alloys and Compounds, 605, 102-108.
    [58] Liu, X.; Pan, L.; Li, J.; Yu, K.; Sun, Z.(2013). Visible light-induced photocatalytic activity of Bi2O3 prepared via microwave-assisted method. Journal of Nanoscience and Nanotechnology, 13, 5044-5047.
    [59] Schlesinger, M.; Weber, M.; Schulze, S.; Hietschold, M.; Mehring, M. (2013).
    Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chemistry Open, 2,146-155.
    [60] Bera, K.K.; Chakraborty, M.; Mondal, M.; Banik, S.; Bhattacharya, S.K.(2020). Synthesis of α-β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight. Ceramics International, 46, 7667-7680.
    [61] Raj, R.B.; Umadevi, M.; Parimaladevi, R. (2021). Synergy photodegradation of basic dyes by ZnO/Bi2O3 nanocomposites under visible light irradiation. Iranian Journal of Chemistry and Chemical Engineering, 40, 1121-1131.
    [62] Bano, Z.; Saeed, Y.; Xia, M.; Lei, W.; Wang, F. (2018). Preparation of Bi2O3/ZnO/g-C3N4 and its photocatalytic degradation for rhodamine B and methyl orange under visible light. Journal of Chemical Sciences, 3, 14-28.
    [63] Yasin, M.; Saeed, M.; Muneer, M.; Usman, M.; Haq, A.; Sadia, M.; Altaf, M. (2022). Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surfaces and Interfaces, 30,101846.
    [64] Meng, .; Yin, Z.; Jiang, J.; Liu, W. (2022). Electrospun nanofibers of Pd-doped α-Bi2O3 for enhancing photocatalytic denitrification of fuel oil under visible light. Materials Science in Semiconductor Processing, 121, 105359.
    [65] Vega-Mendoza, M.S.;. Luévano-Hipólito, E.; Leticia, M.T.M. (2021). Design and fabrication of photocatalytic coatings with α/β-Bi2O3 and recycled-fly ash for environmental remediation and solar fuel generation. Ceramics International, 47, 26907-26918.
    [66] Wu, G.; Zhao, Y.; Zhao, J. (2022). Facile synthesis of novel round-cake-like α-Bi2O3 hierarchical architectures for extended visible-light photocatalytic performance. Materials Research Bulletin, 146, 111594.
    [67] Wang, Y.; Cui, Z.; Xue, Y.; Zhang, R.; Yan, A. (2019). Size-Dependent Thermodynamic Properties of Two Types of Phase Transitions of Nano-Bi2O3 and Their Differences. Journal of Physical Chemistry, 123, 19135−19141.
    [68] Li, J.; Inukai, K.; Takahashi, Y.; Shina, W. (2016). Synthesis and size control of monodispersed BaTiO3–PVP nanoparticles. Journal of Asian Ceramic Societies, 4, 394-402.
    [69] Shaw, W.H.R.; Bordeaux, J. (1955). The Decomposition of Urea in Aqueous Media. Journal of the American Chemical Society, 77, 4729–4733.
    [70] Meng, Q.; Yin, Z.; Lu, Q.; Xia, Y.; Zhao, Y.; Wan, X. (2022). Self-assembled BiFeO3/β-Bi2O3 heterojunction nanofibers with enhanced visible-light-driven photocatalytic denitrification properties. Materials Letters, 309, 131402.
    [71] Bogusz, K.; Cardillo, D.; Tehei, M.; Boutard, T.; Barkerc, T.P.; Devers, T.; Rosenfeld, A. Dou, S.X.; Liu, H.K.; Konstantinov, K. (2018). Biocompatible Bi(OH)3 nanoparticles with reduced photocatalytic activity as possible ultraviolet filter in sunscreens. Materials Research Bulletin, 108, 130-141.
    [72] Huang, M.; Wang, L.; Zhang, K.; Yan, M.; Li, Y.; Zhu, Z.; Yang, J. (2020). Preparation of three-dimensional flower-like Fe-Bi(OH)3 nanocomposites and the photocatalytic properties for degradation of Rhodamine B in presence of visible light. Optik, 216, 164876.
    [73] Hernández-Gordillo, A.; Medina, J. C.; Bizarro, M.; Zanella, R.; Monroy, B. M.; Rodil, S. E. (2016). Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent. Ceramics International, 42, 11866-11875.
    [74] Delogu, F.; Gorrasi, G.; Sorrentino, A. (2017). Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Progress in Materials Science, 86, 75-126.
    [75] Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva Z.; Criado, J. M.; Delogu, F,; Dutková, E,; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Ciurowa, K.W. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society, 42, 7571.
    [76] Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46, 1-184.
    [77] 陳宗翰. (2021). α/δ- Bi2O3同質接面合成與光催化應用(Synthesis of α/δ-Bi2O3 homojunction and their Photocatalytic applications) .國立成功大學資源工程學系碩士論文.
    [78] Cui, Y.; Zhang, X.; Guo, R.; Zhang, H.; Li, B.; Xie, M.; Cheng, Q.; Cheng, X. (2018).
    Construction of Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance and mechanism. Separation and Purification Technology, 203, 301-309.
    [79] Jiang, H.Y.; Liu, J.; Cheng, K.; Sun, W.; Lin, J. (2013). Enhanced visible light photocatalysis of Bi2O3 upon fluorination. The Journal of Physical Chemistry A, 117, 20029-20036.
    [80] Gou, X.; Li, R.; Wang, G.; Chen, Z.; Wexler, D. (2009). Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology, 20, 495501.
    [81] Bera, K. K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S. K. (2018). Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. Journal of hazardous materials, 352, 182-191.
    [82] Wu, Y. & Lu, G. (2014). The roles of density-tunable surface oxygen vacancy over bouquet-like Bi2O3 in enhancing photocatalytic activity. Physical Chemistry Chemical Physics, 16, 4165-4175.
    [83] Yang, L. L.; Han, Q. F.; Zhao, J.; Zhu, J. W.; Wang, X. & Ma, W. H. (2014). Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity. Journal of alloys and compounds, 614, 353-359.
    [84] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 4, 035039.
    [85] Xiao,Y.; Wu, J.; Jiaa, T.; Li, T.; Wang, Z.; Qi, Y.; Liu, Q.; Qi, X.; He, P. (2021). Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury. Colloid and Interface Science Communications, 40, 10357.
    [86] Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: acomparative overview. RSC Advances, 4, 37003-37026.
    [87] Alam, S.M.Nur.; Marzia,S.; Atol, M.; Sumon, I.; Fataha, N.R.; Aminul, I.; Mst. Sumaia, A.S. (2022) A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728.
    [88]Liu, T.; Wang, L.; Lu, X., Fan, J.; Cai, X.; Gao, B.; Lv, Y. (2017). Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4:adsorption, active species, and pathways. RSC advances, 7, 12292-12300.
    [89] Galindo, C.; Jacques, P.and.; Kalt, A. (2000). Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations. Journal of Photochemistry and Photobiology A: Chemistry, 130, 35-47.
    [90] Zhang, F.; Zhao, J.; Shen, T.; Hidaka, H.; Pelizzetti, E.; Serpone, N.(1998). TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B: Environmental, 15, 147-156.
    [91] Gupta, N. K.; Ghaffari, Y., Kim, S.; Bae, J., Kim, K. S.; Saifuddin, M. (2020). Photocatalytic degradation of organic pollutants over MFe2O4 (M= Co, Ni, Cu, Zn) nanoparticles at neutral pH. Scientific reports, 10, 1-11.
    [92] Hu, S.; Zhu, J.; Wu, L.; Wang, X.; Liu, P.; Zhang, Y.; Li, Z; (2011). Effect of Fluorination on Photocatalytic Degradation of Rhodamine B over In (OH)ySz: Promotion or Suppression?. The Journal of Physical Chemistry C, 115, 460-467.
    [93] R.López, R.C.; Melián, E.P.; Ortega Méndez, J.A.; Santiago, D.E.; Doña Rodrígue, J.M.; Díaz, O.G. (2015). Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 312, 45-54.
    [94] 陳寗.(2022). 2022碩士論文. 國立成功大學資源工程學系碩士論文.
    [95] Wang, L.; Wang, W.; Shang, M.; Sun, S.; Yin, W.; Ren J. (2010). Visible light responsive bismuth niobate photocatalyst: enhanced contaminant degradation and hydrogen generation. Journal of Materials Chemistry A, 20, 8405.
    [96] Fu, F.; Shen, H.; Xue, W. (2019). Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction. Journal of Catalysis, 375, 399-409.
    [97] Chen, Z.; Jiang, X.; Zhu, C.; Shi, C. (2016). Chromium-modified Bi4Ti3O12 photocatalyst: application for hydrogen evolution and pollutant degradation. Applied Catalysis B: Environmental, 199, 241-251.
    [98] Fang, W.; Jiang, Z.; Yu, L.; Liu, H. ; Shangguan, W.; Terashima, C. (2017). Novel dodecahedron BiVO4 :YVO4 solid solution with enhanced charge separation on adjacent exposed facets for highly efficient overall water splitting. Journal of Catalysis, 352, 155-159.
    [99] Chen, Z.; Jiang, X.; Zhu, C.; Shi, C. (2016). Chromium-modified Bi4Ti3O12 photocatalyst: application for hydrogen evolution and pollutant degradation. Applied Catalysis B, 199. 241-251.
    [100] Du, M.; Zhang, S.; Xing, Z.; Li, Z.; Chen, P.; Pan, K.; Zhou, W. (2020). Dual plasmons-promoted electron-hole separation for direct Z-scheme Bi3O4Cl/AgCl heterojunction ultrathin nanosheets and enhanced photocatalytic-photothermal performance. Journal of Hazardous Materials, 384 , 121268.
    [101] Song, S.; Xing, Z.; Wang, K.; Zhao, H.; Chen, P.; Li, Z.; Zhou W. (2021). 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy Environ.
    [102] Wang, K.; Xing, Z.; Du, M.; Zhang, S.; Li, Z.; Yang, S.; Pan, K. ; Liao, J.; Zhou, W. (2021). Zinc sulfide quantum dots/zinc oxide nanospheres/bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance. Journal of Colloid and Interface Science, 592, 259-270.

    下載圖示 校內:2024-09-30公開
    校外:2024-09-30公開
    QR CODE