| 研究生: |
劉文亮 Liu, Wen-Liang |
|---|---|
| 論文名稱: |
光漂白於電光高分子之波導式表面電漿共振感測器 Surface Plasmon Resonance Waveguide Sensor Based on Photobleaching-Induced Birefringence in an Electro-optic Polymer |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 積體光學 、表面電漿共振 、光漂白 、光波導 |
| 外文關鍵詞: | integrated optics, optical waveguide, photobleaching, surface plasmon resonance (SPR) |
| 相關次數: | 點閱:141 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之微感測器中的脊狀光波導是利用反應式離子蝕刻機(RIE : Reactive Ion Etching)對高分子材料DR1/PMMA蝕刻出脊狀的波導;而橫向電場(TE)及橫向磁場(TM)模態偏振光波導則是利用UV光來對DR1/PMMA做光漂白(Photobleaching)。研究中使用有機染色分子DR1(disperse red one)材料當核心層的目的是因為其在未光漂白前的TE-mode與TM-mode的折射係數差值幾乎是相同;但經過光漂白之後,nTM值會隨照光的時間增加而增加,而nTE值會隨曝光的時間增加而減少。
本論文中,以RIE(Reactive Ion Etching)製作成脊狀波導,並利用Photobleaching製作出TE模態偏振光波導及TM模態偏振光波導,其量測結果之消光率(Extinction Ratio)各別為15.8dB、1.19dB;最後,綜合脊狀波導及TM模態偏振光漂白波導的導光特性、及結合表面電漿共振原理製作出光漂白波導式表面電漿共振微感測器。當其產生表面電漿共振現象後,所量測到消光率為20dB。
In this research, the micro-sensor of the rid waveguide was etched waveguide on the polymer material DR1/DMMA. The transverse electric (TE) mode and the transverse magnetic (TM) of the polarized waveguide was photobleached by UV light on DR1/PMMA. We use disperse red one (DR1) material as the core layer. After Photobleaching, the value will rise up with the exposure time, but the value will reduce.
In this thesis, we used RIE(Reactive Ion Etching) manufacture the rib waveguide and we also manufactured TE-mode and the TM-mode polarized light waveguide through photobleaching. The results of the extinction ratio in TE and the TM polarizer are 15.8dB and 1.19dB, respectively. In final, we integrate the rid waveguide and TM-mode polarization Photobleaching-Induced Waveguide of transmission light characteristic, and the principle of SPR to design the surface plasmon resonance micro-sensor. When the surface plasmon resonance phenomenon comes out, the result will be 20dB extinction ration at the wavelength of 632.8nm.
[1] Lübbers, D. W. and Optiz, N., “The pCO2-/pO2-Optode: a new probe for measurement of pCO2 or pO2 in fluides and gases,” Zeitschrift Für Naturforschung C, Vol. 30, pp532-533, 1975.
[2] Melendez, J. Carr, R. Barthelomew, D. Taneja, H. Yee, S. Jung, C. and Furlong, C. “Development of a surface plasmon resonance sensor for commercial applications,” Sens. Actuators B, vol. 39,pp. 375-379, Mar. 1997.
[3] Johnston, K. S. Karlson, Jung, S. R. C. and Yee, S. S. “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242-246, 1995.
[4] Chadwick, B. and Gal, M. “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., Part I, vol. 32, pp. 2716-2717, 1993.
[5] Nelson, S. G. Johnston, K. S. and Yee, S. S. “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B, vol. 35, pp.187-191, Sept. 1996.
[6] Otto, A., “ Excitation of surface plasma waves in silver by the method of frustrated total reflection, ” Z. Physik, Vol. 216, pp. 398-410, 1968.
[7] Nylander, C., Liedberg, B. and Lind, T., “Gas detection by means of surface plasmons resonance,” Sensors and Actuators, Vol. 3, pp. 79-88, 1982.
[8] Zhang, L. M. and Uttamchandani, D., “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett., Vol. 23, pp. 1469-1470, 1988.
[9] Cheng, Y. C., Su, W. K. and Liou, J. H., “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol,” Opt. Eng. Vol. 39, No.1, pp. 311-314, 2000.
[10] Nelson, S. G., Johnston, K. S. and Yee, S. S., “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Actuators B, Vol. 35-36, pp. 187-191, 1996.
[11] Kabashin, A. V. and Nikitin, P. I., “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. commun., Vol. 150, pp. 5-8, 1998.
[12] Kruchinin, A. A. and Vlasov, Y. G., “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor,” Sensors and Actuators B, Vol. 30, pp. 77-80, 1996.
[13] Karlsson, R. and Ståhleberg, R., “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. Vol. 228, pp. 274-280, 1995.
[14] Toyama, S., Doumae, N., Shoji, A. and Ikariyama Y., “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sensors and Actuators B, Vol. 65, pp. 32-34, 2000.
[15] Raether, H., “Surface plasmons on smooth and rough surfaces and on gratings, ” Springer-Verlag, Berlin, 1988.
[16] Nikitin, P. I., Beloglazov, A. A., Valeiko, M. V., Creighton, J. A., Smith, A. M., Sommerdijk, N. A. and Wright, J. D., “Silicon-based surface plasmon resonance combined with surface-enhanced Raman scattering for chemical sensing,” Rev. Sci, Instrum., Vol. 68, No.6, pp. 2554-2557, 1997.
[17] Homola, J., Koudela, I. and Yee, S. S., “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, Vol. 54, pp. 16-24, 1999.
[18] Nylander, C., Liedberg, B. and Lind, T., “ Gas detection by means of surface plasmons resonance, ” Sensors and Actuators, Vol. 3, pp. 79-88, 1982.
[19] Suchoski, S.S., Findakly, T. K., and Leonberger, F. J., “ Integrated optical waveguide polarizer based on photobleaching-induced,” IEEE Photon. Technol. Lett., vol. 9, pp. 1125-1127, 1997.
[20]Lee,S.S., Garner,S., Chen,A.T., Chuyanov,V., Steier,W.H., Ahn,S.W., Shin,S.Y., “ TM-pass polarizer based on a photobleaching-induced waveguide in polymers, ” IEEE Photonics Technology Lett. Vol. 10 pp. 836-838, 1998.
[21] Lee, S.S., Garner S, Steier, W.H., Shin, S.Y., “ Integrated optical polarization splitter based on photobleaching-induced birefringence in azo dye polymers, ” Applied Optics, vol. 38, pp. 530-533, 1999.
[22] Watanabe, O. Tsuchimori, M. Okada, A.,“Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Applied Physics Letters, vol.71, No.6, pp. 750-752, 1997.
[23] Ono, H., kowatari, N., Kawatsuki, N., “ Study on dynamics of laser-induced birefringence in azo dye doped polymer films, ” Optical Materials, vol. 15, pp. 33-39, 2000.
[24] Kittel, C., “Introduction to solid state physcis, ”Wiley, New York, 1986.
[25] Palais, Joseph C.,“光纖通訊,”東華書局;董德華,陳萬清譯;民國89年.
[26]呂輝宗, “ 銀-氟化鎂-銀薄膜系統的表面電漿波研究, ” 碩士論文,國立中央大學物理與天文研究所, 1986.
[27]周敏傑,劉決弘,莊運清,楊志文,“ 雷射加工技術手冊 ”工研院機械所,民國78年12月.