| 研究生: |
游昶崴 Yu, Chang-Wei |
|---|---|
| 論文名稱: |
穿臨界二氧化碳朗肯循環動態模擬工具建立 Development of dynamic simulation tool for transcritical carbon dioxide Rankine cycle |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 低溫廢熱回收 、二氧化碳 、穿臨界朗肯循環 、動態模擬 |
| 外文關鍵詞: | Low-temperature waste heat, CO2, Transcritical power cycle, Rankine cycle, dynamic simulation. |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年節能環保意識上升,廢熱回收引起了廣泛的關注,然而低溫廢熱的發電效率仍然存在許多瓶頸。以化石燃料為能源之直熱式蒸汽動力循環(亞臨界朗肯循環),直接應用於低溫廢熱發電時,發電效率將受到極大地影響,因此,適合應用於低溫廢熱回收之循環配置至關重要。在熱力分析中發現,kW級發電規模以及約230 ℃以下之低溫熱源應用中,增設再生器之穿臨界二氧化碳朗肯循環(TCRC-r)效率最高,在特定熱源溫度下,甚至比增設再生器之穿臨界二氧化碳布萊頓循環(TCBC-r)效率高出兩倍。本研究將進一步利用Simulink建立模型,以動態熱源分析穿臨界二氧化碳朗肯動力循環之運轉特性,探討低溫工業廢熱供應不穩定下,系統效率與發電量變動之問題。研究結果說明,增設再生器之循環,在梯形熱源變化時,可改善系統效率之浮動,是較為穩定之循環配置,並且增設再生器對於發電量與系統效率有顯著之效益,然而系統所需之反應時間整體而言也較TCRC來得多,且TCRC-r之延遲秒數,受熱源週期之影響較TCRC來得大。此外TCRC-r系統特性之不連續特徵,原因為二氧化碳在液氣共存態與過冷態轉換過程產生之性質變化導致。
Waste heat recovery has recently drawn intense research attention; however utilization of low-temperature heat still have many bottlenecks. When direct heat source power cycle is applied to low-temperature waste heat, the scale effect will greatly affect the system efficiency, a proper working fluid and cycle configuration are essential to improve the efficiency. Supercritical CO2 power cycle is one of the solutions. The results suggest that, for a system in kWe scale, transcritical CO2 Rankine cycle with regenerator (TCRC-r) is the most efficient, and the overall system efficiency will up to 2 times higher than the transcritical Brayton cycle with regenerator (TCBC-r) under specific conditions. Further in this research, Matlab/Simulink model was built to analyze the operating characteristics of the transcritical CO2 Rankine cycle with a dynamic heat source, and explore the problems of system efficiency and power generation changes under the unstable supply of low-grade industrial waste heat. The research results show that the cycle with regenerator can reduce the fluctuation of system characteristics, that TCRC-r is a relatively stable cycle configuration. Although the addition of regenerator has significant benefits for power generation and overall efficiency, the delay of TCRC-r is more affected by the period of heat source, meaning that the reaction time is less affected by the addition of a regenerator than the heat source period. In addition, the discontinuous characteristics of the TCRC-r system are caused by the change in the properties of CO2 in the process of transforming from the coexisting state of liquid and vapor to the liquid state.
[1] 經濟部能源局,能源供給與消費流程圖 民國108年, https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=867。
[2] Lawrence Livermore National Laboratory, Estimated U.S. Energy Flow Consumption 2019, https://flowcharts.llnl.gov/.
[3] 台灣經濟研究院,區域能源整合調查與策略建義,2011。
[4] 謝瑞青、李毓仁、郭泰融、張家銘,ORC 低溫差餘熱發電系統發展與應用,機械工業雜誌雜誌 379 期,2014。
[5] NIST Reference Fluid Properties (REFPROP) v10.
[6] National Refrigerants, Inc. (NRI) Safety Data Sheets, https://refrigerants.com/resources/safety-data-sheets/.
[7] M.Z. Hauschild and H. Wenzel, Environmental Assessment of Products, Volume 2: Scientific Background, Chapman & Hall, 1998.
[8] J.M. Calm and G.C. Hourahan (2001), Refrigerant data summary, Engineered Systems 18(11), 74-88.
[9] ASHRAE Handbook: Refrigeration systems and applications, American Society of Heating, Refrigerating and Air Conditioning Engineers, 1986.
[10] White Paper: revising flammable refrigerants, Underwriters Laboratories, 2011.
[11] Standard System for the Identification of the Hazards of Materials for Emergency Response (NFPA 704), National Fire Protection Association, 2012.
[12] J. Zhang, A. Desideri, M.R. Kærn, T.S. Ommen, J. Wronski, and F. Haglind (2017), Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units, International Journal of Heat and Mass Transfer 108, 1787-1801.
[13] J.M. Cardemil and A.K. da Silva (2016), Parametrized overview of CO2 power cycles for different operation conditions and configurations – An absolute and relative performance analysis, Applied Thermal Engineering 100, 146-154.
[14] T.J. Held (2015), Supercritical CO2 cycles for gas turbine combined cycle power plants, Power Gen Int.
[15] S.K. Cho, M. Kim, S. Baik, Y. Ahn, and J.I. Lee (2015), Investigation of the bottoming cycle for high efficiency combined cycle gas turbine system with supercritical carbon dioxide power cycle, Turbo Expo: Power for Land, Sea, and Air 56802, V009T36A011.
[16] S. Glos, Evaluation of SCO2 power cycle for direct and waste heat applications, 2nd EuropeanSupercritical CO2 Conference, Essen, Germany, Aug 30-31, 2018
[17] P. Guo, S. Liu, J. Yan, J. Wang, and Q. Zhang (2020), Experimental study on heat transfer of supercritical CO2 flowing in a mini tube under heating conditions, International Journal of Heat and Mass Transfer 153, 119623.
[18] Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, and J.E. Cha (2015), Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear Engineering and Technology 47(6), 647-661.
[19] J. Sarkar (2015), Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion, Renewable and Sustainable Energy Reviews 48, 434-451.
[20] P. Garg, P. Kumar, and K. Srinivasan (2013), Supercritical carbon dioxide Brayton cycle for concentrated solar power, The Journal of Supercritical Fluids 76, 54-60.
[21] F. Crespi, G. Gavagnin, D. Sánchez, and G.S. Martínez (2017), Supercritical carbon dioxide cycles for power generation: A review, Applied Energy 195, 152-183.
[22] S. Lecompte, E. Ntavou, B. Tchanche, G. Kosmadakis, A. Pillai, D. Manolakos, and M. De Paepe (2019), Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application, Applied Sciences 9(12), 2571.
[23] S.-M. Lu (2018), A global review of enhanced geothermal system (EGS), Renewable and Sustainable Energy Reviews 81, 2902-2921.
[24] X.R. Zhang, H. Yamaguchi, K. Fujima, M. Enomoto, and N. Sawada (2007), Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide, Energy 32(4), 591-599.
[25] X.R. Zhang, H. Yamaguchi, and D. Uneno (2007), Thermodynamic analysis of the CO2-based Rankine cycle powered by solar energy, International Journal of Energy Research 31(14), 1414-1424.
[26] X.-R. Zhang, H. Yamaguchi, and D. Uneno (2007), Experimental study on the performance of solar Rankine system using supercritical CO2, Renewable Energy 32(15), 2617-2628.
[27] X.R. Zhang and H. Yamaguchi (2008), An experimental study on evacuated tube solar collector using supercritical CO2, Applied Thermal Engineering 28(10), 1225-1233.
[28] X.-R. Zhang and H. Yamaguchi (2011), An experimental investigation on characteristics of supercritical CO2-based solar Rankine system, International Journal of Energy Research 35(13), 1168-1178.
[29] A.S. Sabau, H. Yin, A.L. Qualls, and J. McFarlane, Investigations of supercritical CO2 Rankine cycles for geothermal power plants, Supercritical CO2 Power Cycle Symposium, Boulder, Colorado, 2011
[30] M.-H. Yang and R.-H. Yeh (2015), Economic performances optimization of the transcritical Rankine cycle systems in geothermal application, Energy Conversion and Management 95, 20-31. 20.
[31] Z. Qiao, Y. Cao, P. Li, X. Wang, C.E. Romero, and L. Pan (2020), Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source, Journal of Cleaner Production 256, 120374.
[32] M. Siddiqui and K. Almitani (2018), Energy Analysis of the S-CO2 Brayton Cycle with Improved Heat Regeneration, Processes 7(1), 3.
[33] L. Li, Y.T. Ge, X. Luo, and S.A. Tassou (2018), Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations, Applied Thermal Engineering 136, 708-717.
[34] Y. Chen, P. Lundqvist, A. Johansson, and P. Platell (2006), A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery, Applied Thermal Engineering 26(17-18), 2142-2147.
[35] M. Astolfi, D. Alfani, S. Lasala, and E. Macchi (2018), Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources, Energy 161, 1250-1261.
[36] J. Meng, M. Wei, P. Song, R. Tian, L. Hao, and S. Zheng (2020), Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage, Energy Conversion and Management 215, 112931.
[37] C. Wu, X.-j. Yan, S.-s. Wang, K.-l. Bai, J. Di, S.-f. Cheng, and J. Li (2016), System optimisation and performance analysis of CO 2 transcritical power cycle for waste heat recovery, Energy 100, 391-400.
[38] X. Wang, Y. Yang, Y. Zheng, and Y. Dai (2017), Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application, Energy 119, 971-982.
[39] Y. Cao, J. Ren, Y. Sang, and Y. Dai (2017), Thermodynamic analysis and optimization of a gas turbine and cascade CO 2 combined cycle, Energy Conversion and Management 144, 193-204.
[40] Y.M. Kim, C.G. Kim, and D. Favrat (2012), Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources, Energy 43(1), 402-415.
[41] G. Shu, L. Shi, H. Tian, S. Deng, X. Li, and L. Chang (2017), Configurations selection maps of CO 2 -based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat, Applied Energy 186, 423-435.
[42] L.-H. Zhi, P. Hu, L.-X. Chen, and G. Zhao (2020), Thermodynamic analysis of an innovative transcritical CO2 parallel Rankine cycle driven by engine waste heat and liquefied natural gas cold, Energy Conversion and Management 209, 112583.
[43] X. Li, H. Huang, and W. Zhao (2014), A supercritical or transcritical Rankine cycle with ejector using low-grade heat, Energy Conversion and Management 78, 551-558.
[44] O. Olumayegun and M. Wang (2019), Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes, Fuel 249, 89-102.
[45] X. Li, G. Shu, H. Tian, L. Shi, and X. Wang (2017), Dynamic Modeling of CO 2 Transcritical Power Cycle for Waste Heat Recovery of Gasoline Engines, Energy Procedia 105, 1576-1581.
[46] R. Wang, X. Wang, H. Tian, G. Shu, J. Zhang, Y. Gao, and X. Bian (2019), Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery, Energies 13(1), 32.
[47] R. Wang, G. Shu, X. Wang, H. Tian, X. Li, M. Wang, and J. Cai (2020), Dynamic performance and control strategy of CO2-mixture transcritical power cycle for heavy-duty diesel engine waste-heat recovery, Energy Conversion and Management 205, 112389.
[48] G. Shu, R. Wang, H. Tian, X. Wang, X. Li, J. Cai, and Z. Xu (2020), Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery, Energy 194, 116825.
[49] L. Li, Y.T. Ge, X. Luo, and S.A. Tassou (2018), Design and dynamic investigation of low-grade power generation systems with CO2 transcritical power cycles and R245fa organic Rankine cycles, Thermal Science and Engineering Progress 8, 211-222.
[50] L. Pan, B. Li, X. Wei, and T. Li (2016), Experimental investigation on the CO2 transcritical power cycle, Energy 95, 247-254.
[51] X. Li, G. Shu, H. Tian, L. Shi, G. Huang, T. Chen, and P. Liu (2017), Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery, Energy 140, 696-707.
[52] X. Li, G. Shu, H. Tian, G. Huang, P. Liu, X. Wang, and L. Shi (2018), Experimental comparison of dynamic responses of CO2 transcritical power cycle systems used for engine waste heat recovery, Energy Conversion and Management 161, 254-265.
[53] L. Shi, G. Shu, H. Tian, G. Huang, X. Li, T. Chen, and L. Li (2018), Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery, Energy 165, 1149-1159.
[54] Advanced SIMulation Programs for TOTal Energy system (ASIMPTOTE), Cycle Tempo Reference Guide.
[55] 高力,硬銲型板式熱交換器型錄 2020,https://www.kaori-bphe.com/uploads/editor/files/Catalogue_TW.pdf。
校內:2025-12-31公開