簡易檢索 / 詳目顯示

研究生: 梁方熒
Liang, Fang-ying
論文名稱: 螺絲製造業成型製程多環芳香烴化合物及金屬之逸散特徵
Fugitive Emission of Polycyclic Aromatic Hydrocarbons and Metals in Forming Process in Fastener Manufacturing Industries
指導教授: 蔡朋枝
Tsai, Perng-jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 勞工暴露排放率金屬加工用油螺絲製造業成型製程金屬元素多環芳香烴化合物
外文關鍵詞: emission rate, workers exposures, Polyaromatic hydrocarbons, metal elements, forming process, faster manufacture industry, metal working fluid
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對螺絲製造業成型製程煙道及作業環境,進行多環芳香烴化合物(Polycyclic Aromatic Hydrocarbons,PAHs)及金屬之採樣分析,以探討PAH及金屬煙道排放及現場逸散特徵,及其對環境與勞工之影響。煙道廢氣以 AST煙道採樣器進行成型機台之三種煙道採樣,結果發現三種機台煙道之Total-PAHs為:機台內煙道(107 g/m3)>下腳料槽煙道(53.6 g/m3)>成品槽煙道(48.7 g/m3),其氣固相PAHs分佈又均以固相PAHs為主(64.9 -87.7 %)。另本研究亦針對製程所使用之金屬加工用油(MEFs)加以分析油中Total-PAHs含量(537 mg/kg),其中HMW-PAHs(81.7 %)>MMW-PAHs(14.5 %)>LMW-PAHs (3.85 %),其分佈與三種煙道廢氣中固相PAHs有類似組成:HMW-PAHs(81.5-81.6 %)> MMW-PAHs(13.9-15.1 %)>LMW-PAHs (3.05-4.48 %),因此推測固相PAHs在螺絲成型過程中主要經由碰撞產生。一台成型機台Total-PAHs排放率(Emission Rate, ER)分別為:機台內煙道(0.082 kg/year)>成品槽煙道(0.0162 kg/year)>下腳料槽煙道(0.010 kg/year),推估螺絲廠整廠五十個成型製程之總ER為5.40 kg/year,相當於2.51座焚化爐(40噸/天)排放量。作業環境分別以Marple-298個人階梯衝擊式採樣器評估作業場所粒徑分佈,IOM可吸入性氣膠採樣器及後接XAD-2吸附管以模擬現場勞工之PAHs暴露情形。結果顯示油霧滴與固相PAHs皆是雙峰分佈,其Fine mode(0.13-1.55m)及Coarse mode(3.50-50.0m m)之油霧滴與Total-PAHs濃度分別為1.36及0.300 g/m3,及5.90及3.59 g/m3,故知勞工現場暴露之固相PAHs應Fine mode為主。另結果顯示作業場所勞工暴露之推估Total-PAHs濃度為26.9 g/m3,氣固相分佈以氣相為主(81.6 %),PAHs暴露可引起致癌風險推估值為1.92 X 10-5。本研究針對製程所使用盤元內七種金屬(鋁、鉻、錳、鉬、鎳、鉛及鋯)進行探討,三種機台煙道之金屬元素以Cr濃度最高:機台內煙道(3.14 g/m3)>下腳料槽煙道(2.03 g/m3)>成品槽煙道(0.20 g/m3)。另針對MWFs加以分析油中金屬含量以鋁及鉻含量最高,分別為54.4及46.3 g/kg,推測煙道中較高之鉻濃度與當天使用盤元中高比例之鉻有關。推估螺絲廠五十個成型機台鉻(0.168 kg/year)、鎳(0.107 kg/year)、鉛(0.015 kg/year)之ER相當於1.04、0.006及0.001座裝設DSI/ESP之垃圾焚化爐(40噸/天)排放量。作業場所之金屬濃度皆低於偵測下限。綜合本研究之結果,可知螺絲成型製程對勞工之Total-PAHs及金屬之暴露危害並不顯著,唯對環境則具有衝擊,採用煙道空氣汙染防治設備實有其必要性。

    This study measured polycyclic aromatic hydrocarbons (PAHs) from flue gas ducts and the workplace environment of a fastener forming precess to characterize their emissions and assess their impacts on ambient environment and workplace workers. PAHs in three types of duct flue gas were collected by using the AST stack-sampling system. Results show that the magnitude as Total-PAHs concentrations in sequence is: forming machine duct (107 g/m3) > scrap surge tank duct (53.6 g/m3) > product surge tank duct (48.7 g/m3). By examining the distribution of particle and gaseous-phase PAHs, we found that Total-PAHs in the three collected ducts were consistently dominated by the former (64.9 -87.7 %). Total-PAHs found in the metal working fluid (MWF) used in the studied forming process (537 mg/kg) was found with a PAH homologue distribution as HMW-PAHs (81.7 %) > MMW-PAHs (14.5 %) > LMW-PAHs (3.85 %). The above results were quite similar to the particle phase: HMW-PAHs (81.5-81.6 %) > MMW-PAHs (13.9-15.1 %) >LMW-PAHs (3.05-4.48 %). PAHs that found in the three types of flue gas duct, suggesting that particle-phase PAHs were resulting from the impaction of MWF associated with the forming process. Total-PAHs emission rates for the three types of flue gas duct were found as: forming machine duct (0.082 kg/year) > product surge tank duct (0.0162 kg/year)> scrap surge tank duct (0.010 kg/year). Based on this, total forming emission for fastener manufactured plant (consisting of 50 forming machines) was estimated as 5.40 kg/year, which is equivalent to the total emissions of 2.51 waste incinerator (capacity: 40 metric tons per day). In workplace, we used a marple cascade impactor for particle size segregating sampler to characterize particle size distributions of both oil mist and Total-PAHs, and IOM personal sampler followed by a XAD-2 sorbent tube to characterize worker exposures. Results show that both oil mists and Total-PAHs were consistently in the form of bi-mode. Oil mist and Total-PAHs concentrations found in the fine mode (0.13 -1.55 m) and coarse mode (3.50-50.0 m) were 1.36 and 0.300 g/m3 , and 5.90 and 3.59 g/m3 , respectively. Suggesting that fine mode PAHs play more important roles on particle- phase PAHs exposed to workers. Estimated worker Total-PAHs exposure was found as 26.9 g/m3, unlike those found in the dust flue gas, which was dominated by gaseous-PAHs (81.6 %). The estimated excessive cancer risk associated with above exposures was found as 1.92 X 10-5. This study also measured seven kinds of metal elements (Al, Cr, Mn, Mo, Ni, Pb and Zr) in the wire rod. Results show that the Cr had the highest concentration as: forming machine duct (3.14 g/m3) > scrap surge tank duct (2.03 g/m3) > product surge tank duct (0.20 g/m3). Metal elements found in MWFs were not similar to the concentration in stack, Al had the hightest concentration (54.4 g/kg) but not the Cr (46.3 g/kg), suggesting that the metal elements in stack were majore resulting from the wire rod which Cr has the most composition. Based on this, metal elements emission form fastener manufactured plant (consisting of 50 forming machines) was estimated as Cr (0.168 kg/year), Ni (0.107 kg/year) and Pb (0.015 kg/year), which is equivalent to the total emissions of 1.04, 0.0006 and 0.001 waste incinerator with DSI/ESP (capacity: 40 metric tons per day).In work place, all of the metal elements were below the detection limit.In conclusion, PAHs and metal elements emission from the forming process of the faster manufacture industry has a very limit impact on workers exposures, but was significant for ambient environment suggest that appropriate air pollution control devices should be used in this industry immediately.

    摘要............I Abstract .......... II 總目錄........... III 表目錄.............V 圖目錄.................VI 第一章 前言 1 1-1. 研究背景 1 1-2. 研究目的 2 第二章 文獻回顧 5 2-1. 螺絲製造業製程介紹 5 2-2. PAHs之性質 7 2-2-1. PAHs之物化特性 7 2-2-2. PAHs之形成機制 8 2-2-3. PAHs之健康危害 9 2-2-4. PAHs之致癌風險評估 10 2-3. 金屬元素之特性 11 2-3-1. 金屬元素之物化特性 11 2-3-2. 金屬元素之來源 12 2-3-3. 金屬元素之毒害性 13 2-3-4. 金屬元素之健康風險評估 14 第三章 研究材料與方法 24 3-1. 研究架構 24 3-2. 研究對象選取 24 3-3. 採樣策略 24 3-3-1. PAHs採樣策略 24 3-3-2. 金屬採樣策略 32 3-3-3. 循環用MWFs採樣策略 32 3-4. 樣本分析方法 32 3-4-1. 秤重分析 32 3-4-2. PAHs之分析方法 33 3-4-3. 金屬之分析方法 34 第四章 研究品質控制與資料處理 41 4-1. 採樣及分析之品質控制 41 4-1-1. 採樣品質控制 41 4-1-2. 分析之品質控制 42 4-2. 資料處理 44 4-2-1. 現場環境及煙道廢氣PAHs及金屬組成特徵 44 4-2-2. 螺絲廠成型製程PAHs及金屬排放係數推估 45 4-2-3. 成型機台PAHs及金屬之煙道捕集效率、煙道排放率及現場逸散率 45 4-2-4. PAHs致癌風險評估 46 第五章 結果與討論 61 5-1. 螺絲廠成型製程PAHs之排放特徵 61 5-1-1. MWFs中之PAHs 61 5-1-2. 成型機台PAHs之排放特徵 61 5-1-3. 成型機台PAHs排放係數及排放率推估 62 5-1-4. 作業現場PAHs之逸散特徵 65 5-1-5. PAHs致肺癌之健康風險評估 66 5-1-6. 循環使用MWFs及煙道排放之PAHs濃度變化 67 5-2. 螺絲廠成型製程金屬元素之排放特徵 68 5-2-1. MWFs之金屬元素 68 5-2-2. 成型機台金屬元素之排放特徵 69 5-2-3. 成型機台金屬元素排放係數及排放率推估 70 5-2-4. 作業現場金屬元素之逸散特徵 71 5-2-5. 循環使用MWFs及煙道排放之金屬元素濃度變化 72 第六章 結論與建議 93 6-1. 結論 93 6-2. 建議 94 第七章 參考文獻 96

    ACGIH. Documentation of Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs) Sixth Edition.
    Ameille J, Wild P, Choudat D, Ohl G, Vaucouleur JF, Chanut JC et al. Respiratory symptoms, ventilatory lmpairment, and bronchial reactivity in oil mist-exposed automobile workers. Am J Ind Med 27: 247256 (1995) .
    Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1-32 (2005).
    Attfield MD, Hewett P. Exact expressions for the bias and variance of estimators of the mean of a lognormal distribution. Am Ind Hyg Asso J 53: 423–435 (1992).
    Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R.A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:279-300 (1991).
    Bakke B, Stewart P, Ulvestad B, Eduard W. Dust and gas exposure in tunnel construction work. Am Ind Hyg Assoc J 62: 457465 (2000).
    Bartok W and Sarofim AF. Fossil Fuel Combustion: A Source Book. John Wiley & Sons, Inc New York (1991).
    Bjorseth A and Ramahl T. Source and Emission of PAHs, Handbook of Polycyclic Aromatic Hydrocarbons. 1, Dekker, M, Inc New York (1983).
    Blumer M. Blumer W. Reich T. Polycylic Aromatic Hydrocarbons in Soils of a Moutain Valley, Correlation with Highway Traffic and Cancer Incidence, Environ Sci Technol 11:1082-1084 (1977).
    Bracker A, Storey E, Yang C, Hodgson MJ. An outbreak of hypersensitivity pneumonitis at a metalworking plant: a longitudinal assessment of intervention effectiveness. Appl Occup Environ Hyg 18:96-108 (2003).
    Brockhaus A, Dolgner R, Ewers U, Kramer U, Soddemann H, Wiegand H. Intake and health effects of thallium among a population living in the vicinity of a cement plant emitting thallium containing dust. Int Arch Occup Environ Health 48:375-389 (1981).
    Cass GR. Hughes LA, Bhave P, Kleeman MJ, Allen JO, Salmon LG.. The chemical composition of atmospheric ultrafine particles. Philosophical transactions of the royal society 358:2581-2592 (2000).
    Chen MR, Tsai PJ, Chang CC, Shih TS, Lee WJ, Liao PC. Particle size distribution of oil mists in workplace atmospheres and their exposure concentrations to workers in fastener manufacturing industry. Journal of hazardous materials 146: 393-398 (2007).
    Cisternas FA, Tapia G, Arredondo M, Cartier-Ugarte D, Romanque P, Sierralta WD, Vial MT, Videla LA, Araya M. Early histological and functional effects of chronic copper exposure in rat liver. Biometals 18:541-551 (2005).
    Cook JW, Hewett CL, Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. Part I, II and Ill. J Chem Soc: 395-421 (1933).
    Coutant RW, Brown L, Chuang JC, Riggin RM, Lewis RG. Phase distribution and artifact formation in ambient air sampling for polynuclear aromatic hydrocarbons. Atmos Environ. 22(2): 403-409 (1988).
    Cullen MR, Balmes JR, Robins JM, Smith GJW. Lipoid pneumonia caused by oil mist exposure from a steel rolling tandem mill. Am J Ind Med 2:5158 (1981).
    Davidson T, Kluz T, Burns F, Rossman T, Zhang Q, Uddin A, Nadas A, Costa M. Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice. Toxicol Appl Pharmacol 196:431-437 (2004).
    Eldred RA, Cahill TA, Flocchini RG.. Composition of PM 2.5 and PM 10 aerosols in the IMPROVE network. J. Air & Waste Manage. Assoc.47:194-203 (1997).
    Frenklach M. Clary DW, Yuan T, Gardine CW, Stein SE. Effect of fuel structure on pathway to soot. Combust Sci Technol 74:283-289 (1988).
    Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20(3):301-307 (2006).
    Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit 1:RA57-65 (2006).
    Gauthier SL. Metalworking fluids: oil mist and beyond. Appl Occup Environ Hyg 18:818-824 (2003).
    Gilbert RO. Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold (1987).
    Grimmer G.. Environmental carcinogens: polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581-1588 (1983).
    Hansen ES. Mortality of mastic asphalt workers. Scand J Work Environ Health 17:20-24 (1991).
    Harrison RM, Smith DJT, Luhana L. Source apportionment of atomospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825-832 (1996).
    Hext PM, Tomenson JA and Thompson P. Titanium Dioxide: Inhalation Toxicology and Epidemiology. Annals of Occupational Hygiene 49(6):461-472 (2005).
    Huvinen M, Uitti J, Zitting A, Roto P, Virkola K, Kuikka P, Laippala P, Aitio A. Respiratory health of workers exposed to low levels of chromium in stainless steel production. Occup Environ Med 53:741-747 (1996).
    IARC. Monographs on the Evaluation of Carcinogenic Risk to Human. Supplement 7. Lyons: International Agency for Research on Cancer (1987).
    IARC. Lyon. France. Compounds, chemicals, environmental and experimental data. in: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans.95-451 (1983).
    IARC. Lyon. France. Polycyclic aromatic compounds: Part Ⅰ. Chemical emvironment and experimental data. IARC Monographs Vol. 32 (1983).
    Janssen NA, Van Mansom DFM, Van Der Jagt K, Harssema H, Hoek G.. Mass concentration and elemental composition of airborne particulate matter at street and background locations. Atmospheric Environment. 31:1185-1193 (1997)..
    Jarvholm B, Bake B. Lavenius B, Thiringer G, Vokmann R. Respiratory symptoms and lung function in oil mist-exposed workers. J Occup Med 24: 473479 (1982).
    Johnston P. Mercury Falling: An Analysis of Mercury Pollution from Coal-Burning Power Plants." Environmental Working Group (1999).
    Josephson J. Polynuclear aromatic hydrocarbons. Environmental Science and Technology 18:93-95 (1981).
    Kalberlah F, Frijus-Plessen N, Hassauer M. Toxicological criteria for the risk assessment of polycyclic aromatic hydrocarbons (PAHs) in existing chemical. Part 1: the use of equivalent factors. Altlasten-Spektrum 5, 231-237 (1995).
    Karas Z and Bladek J. Nickel in the environment and morbid symptoms. Przegl Lek 61 (3):55-57 (2004).
    Kawata K, Yokoo H, Shimazaki R, Okabe S. Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol 41(10):3769-3774 (2007).
    Kazerouni N, Thomas TL, Petralia SA, Hayes RB. Mortality among workers exposed to cutting oil mist: update of previous reports. Am J Ind Med 38: 410416 (2000).
    Kemp K. Trends and sources for heavy metals in urban atmosphere. Nuclear Inst and Methods in Physics Research 189:227-232 (2002).
    Kennedy SM, Chan YM, Teschke K, Karlen B. Change in airway responsiveness among apprentices exposed to metalworking fluids. Am J Respir Crit Care Med 159: 8793 (1999).
    Larsen JC, Lssen PB. Chemical carsinogens. In: Air Pollution and Health (Hester RE, Harrison RM eds). Cambridge, UK: The Royal Society of Chemistry 33-56 (1998).
    Lee JC, Halpern S, Lowe DG, Forbes A, Lennard-Jones JE. Absence of skin sensitivity to oxides of aluminium, silicon, titanium or zirconium in patients with Crohn's disease. Gut. 39:231-233 (1996).
    Lee ML, Novotny MV, Bartie KD. Analytical chemistry of polycyclic aromatic hydrocarbons. New York: Academic Press (1981).
    Lewis RG, Fortune CR, Willis RD, Camann DE, Antley JT. Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size. Environ Health Perspect 107(9): 721–726 (1999).
    Lide D. CRC handbook of chemistry and physics. 75th Ed. CRC press (1995).
    Li CT, Lin YC, Lee WJ, Tsai PJ. Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environmental health perspectives 111(4): 483-487 (2003).
    Lin ZQ, Schemenauer RS, Schuepp PH, Barthakur NN, Kennedy GG. Airborne metal pollutants in high elevation forests of southern Quebec, Canada, and their likely source regions. Agricultural and Forest Meteorology 87: 41-54 (1997).
    Massin N, Bohadana AB, Wild P, Goutet P, Kirstetter H, Toamain JP. Airway responsiveness, respiratory symptoms, and exposures to soluble oil mist in mechanical workers. Occup Environ Med 53: 748752 (1996).
    Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278-1284 (1992).
    Michalek DJ, Hii WWS, Sun JS, Gunter KL. Experimental and analytical efforts to characterize cutting fluid mist formation and behavior in machining. Appl Occup Envir Hyg 18: 842854 (2003).
    Monarca S, Pasquini R, Sforzolini GS, Savino A, Viola V.. Mutagenic/carcinogenic hazards in a cold-rolling steel plant exposed to mineral oils: environmental monitoring phase. Int Arch Occup Environ Heal 54: 345354 (1984).
    Monarca S, Pasquini R, Scassellati G, Savino A, Bauleo FA, Angeli G.. Environmental monitoring of mutagenic/carcinogenic hazards during road paving operation with bitumens. Int Arch Occup Environ Health 59: 393-402 (1987).
    Mulhausen JR, Damiano J. A Stategy for Assessing and Managing Occupational Exposures. Fairfax: American Industrial Hygiene Association (AIHA) (1998).
    Mulkey JP, Oehme FW. A review of thallium toxicity. Vet Hum Toxicol. 35:445-453 (1993).
    Muller P. Scientific Criteria Document for Multimedia Standards Development Polycyclic Aromatic Hydrocarbons (PAHs); Part 1: Hazard Identification and Dose-Response Assessment. Ontario, CN: Standard Development Branch, Ontario Ministry of Environment and Energy (1997).
    Nadon L and Siemiatycki J. Cancer risk due to occupational exposure to polycyclic aromatic hydrocarbons. Am. J. Ind. Med. 28:303-324 (1995).
    Malcolm HM, Dobson S. The calculation of an environmental assessment level (EAL) for atmospheric PAHs using relative potencies. Department of the Environment London UK 34-46 (1994).
    Natusch DFS, Wallace JR, Evans Jr. CA. Toxic Trace Elements: Preferential Concentration in Respirable Particles. Science 183(4121):200-204 (1974).
    Nisbet IC, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290-300. (1992).
    Nriagu, JO. Global Metal Pollution: Poisoning the Biosphere. Environment Envtar 32(7): 7-11, 28-33 (1990)
    Olmez J, Sheffield AE, Gordon GE, Houck JE, Pirtchett LC, Cooper JA, Dzubay TG, Bennett RL. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. J Air Pollut Control Assoc 38(11):1392-1402 (1988).
    Osinska E, Kanoniuk D, Kusiak A. Aluminum hemotoxicity mechanisms. Ann Univ Mariae Curie Sklodowska 59:411-416 (2004).
    Paasivirta J. Chemical ecotoxicology, Lewis Publishers, Inc (1991).
    Pardo R, Barrado E, Perez L, Vega M. Determination and Speciation of Heavy Metals in Sediments of the Pisuerga River. Environmental Monitoring and Assessment 24(3):373-379 (1990).
    Park D, Choi B, Kim S, Kwag H, Joo K, Jeong J.. Exposure assessment to suggest the cause of sinusitis developed in grinding operations utilizing soluble metalworking fluids. J Occup Health. 47:319-326 (2005)
    Peter AL and Viraraghavan T. Thallium: a review of public health and environmental concerns. Environ Int. 31:493-501 (2005).
    Plog BA, Niland J, Quinlan PJ. Fundamentals of industrial hygiene 4th edition (1995).
    Pott P. Chirurgical observations relative to the Ccataract, the polypus of the nose, the cancer of the scrotum, the different kinds of ruptures, and the mortification of toes and feet. Hawes, Clarke, and Collins, London (1775).
    Rappaport SM. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg 35: 61–121 (1991).
    Robertson AA, Weir DC, Burge PS. Occupational asthma due to oil mists. Thorax 43: 200205 (1988).
    Rodrics JV, Brett SM, Wrenn GC. Significant risk decisions in Federal regulatory agencies. Regul Toxicol Parmocol. 7:307-320 (1987).
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks.27:1892-1904 (1993).
    Ronneberg A and Skyberg K. Mortality and incidence of cancer among oil exposed workers in a Norwegian cable manufacturing company Part I Exposure conditions 192079. Brit J Ind Med 45: 589594 (1988).
    Russi M, Dubrow R, Flannery JT, Cullen MR, Mayne ST. Occupational exposure to machining fluids and laryngeal cancer risk: contrasting results using two separate control groups. Am J Ind Med 31: 166171 (1997).
    Schneider T, Cherrie JW, Vermeulen R, Kromhout H. Dermal exposure assessment.Ann Occup Hyg. 44:493-499 (2000).
    Seidenari S, Giusti F, Pellacani G, Antelmi AR, Foti C, Bonamonte D, Ayala F, Balato G, Cristaudo A, Stingeni L, Lisi P. Reactivity to euro coins and sensitization thresholds in nickel-sensitive subjects. J Eur Acad Dermatol Venereol. 19:449-454 (2005).
    Shaheen N, Shah MH. and Jaffar M. A study of airborne selected metals and particle size distribution in relation to climatic zariables and their source identification. Water, Air, & Soil Pollution 164: 275-294 (2005).
    Simpson AT, Stear M, Groces AJ, Piney M, Bradley SD, Stagg S, Crook B. Occupational exposure to metalworking fluid mist and sump fluid contaminants. Ann occup Hyg 47:17-30 (2003).
    Singh N, Pandey V, Misra J, Yunus M, Ahmad KJ. Atmospheric lead pollution from vehicular emissions- measurements in plants, soil and milk samples. Environmental Monitoring and Assessment 45: 9-19 (1997).
    Stear MA. Controlling health risks from workplace exposure to metalworking fluids in the United Kingdom engineering industries. Appl Occup Environ Hyg 18:877-882 (2003).
    Svendsen K and Hilt B. Exposure to mineral oil mist and respiratory symptoms in marine engineers. Am J Ind Med 32: 8489 (1997).
    Svendsen K and Borresen E. Measurements of mineral oil mist, hydrocarbon vapor, and noise in engine rooms of ships. Appl Occup Environ Hyg; 14:18691 (1999).
    Thornburg J and Leith D. Mist generation during metal machining. J Trib 122: 544549 (2000).
    Todaro A, Bronzato R, Buratti M, Colombi A. 1991. Acute exposure to vanadium-containing dusts: the health effects and biological monitoring in a group of workers employed in boiler maintenance Med Lav. 82:142-147.
    U.S. Environmental Protection Agency (EPA). “Federal register: part IV guidelines for exposure assessment. Notice Washington DC. 57(104 )(1992).
    USEPA. Technical support document for HWC MACT standards, Volume II, Miscellaneous technical issue (1996).
    Van Ryssen JB, Botha WS, Stielau WJ. Effect of a high copper intake and different levels of molybdenum on the health of sheep. J S Afr Vet Assoc 53(3):167-170 (1982)
    Vyskocil A, Viau C. Assessment of molybdenum toxicity in humans. J Appl Toxicol 19:185-192 (1999).
    Wu T. Sempos CT. Freudenheim JL. Muti P. Smit E. Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14:195-201(2004).
    Yatin M, Tuncel S, Aras N.K, Olmez I, Aygun S, Tuncel G.. Atmospheric trace elements in Ankara, Turkey: 1. factors affecting chemical composition of fine particles. Atmos environ 34: 1305-1318 (2000).

    下載圖示 校內:2011-02-04公開
    校外:2012-02-04公開
    QR CODE