簡易檢索 / 詳目顯示

研究生: 黃崢
Huang, Zheng
論文名稱: 歸一協合應力偶梁理論於功能性複合材料微米梁之靜態撓曲及自然振動分析
A Unified Consistent Couple Stress Beam Theory for Static Bending and Free Vibration Analyses of Functionally Graded Microscale Beams
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 31
中文關鍵詞: 協合應力偶理論變形微米梁修正應力偶理論歸一剪切變形理論振動
外文關鍵詞: Consistent couple stress theory, Deformation, Microscale beams, Modified couple stress theory, Unified shear deformation theory, Vibration
相關次數: 點閱:57下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於協合應力偶理論(Consistent couple stress theory, CCST)推演一套歸一的理論體系,用於功能性(Functionally graded, FG)複合材料微米梁(Microscale beams , MBs)的靜態撓曲和自然振動分析,透過在理論推演中沿FGMB厚度方向假設剪切變形之特定形狀函數,即可獲得基於CCST之Euler-Bernoulli, Timoshenko, 和Reddy梁理論,以及基於CCST之正弦、指數和雙曲線剪切變形梁理論對應之強形式數學方程式,因此上述理論皆可視為本歸一協合應力偶梁理論之特例。本文將對於上述各微米梁理論求得之結果作綜合比較,藉由材料長度比例參數、縱橫比和材料屬性梯度指數,檢測其造成FGMB的變形、應力和自然頻率參數之影響。

    Based on the consistent couple stress theory (CCST), the authors develop a unified formulation for static bending and free vibration analyses of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories can be obtained by assigning some specific shape functions of the shear deformations through the thickness direction of the FGMB in the unified formulation. The above theories are thus included as special cases of the unified consistent couple stress beam theory. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. Some key effects on the deformation, stress, and natural frequency parameters of the FGMB are examined, including the material length scale parameter, the aspect ratio, and the material-property gradient index.
    Keywords: consistent couple stress theory; deformation; microscale beams; modified couple stress theory; unified shear deformation theory; vibration.

    摘要 I Extended Abstract II 目錄 VII 第一章 緒論 1 第二章 理論推導 4 2.1 協合應力偶理論 4 2.2 運動學 4 2.3 組成方程式 6 2.4 歐拉-拉格朗日方程及邊界條件 7 第三章 應用 10 第四章 CCST與MCST之異同 12 第五章 數值範例 14 5.1 靜態撓曲分析 15 5.2 自然振動分析 17 第六章 結論 19 第七章 參考資料 20

    Akgoiz B. and Civalek, O. (2012), “Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory”, Mater. Des., 42, 164-171.
    Amar, H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), “A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate”, Steel Compos. Struct., 26(1), 89-102.
    Beni, Y.T. (2016), “Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams”, J. Intell. Mater. Syst. Struct., 27, 2199-2215.
    Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), “Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory”, Adv. Mater. Res., 6(3), 279-301.
    Fakhrabadi, M.M.S. (2015), “Size effects on nanomechanical behaviors of nanoelectronics devices based on consistent couple-stress theory”, Int. J. Mech. Sci., 92, 146-153.
    Fakhrabadi, M.M.S. (2016), “Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nano-resonators using consistent couple stress theory”, Compos. Part B, 88, 26-35.
    Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2013), “Investigation of the mechanical behaviors of carbon nanotubes under electrostatic actuation using the modified couple stress theory”, Full. Nanotubes Carbon Nanostruct., 21, 930-945.
    Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), “Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences”, Prog. Aerosp. Sci., 70, 42-68.
    Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), “Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory”, Steel Compos. Struct.,
    Hadjesfandiari, A.R. (2013), “Size-dependent piezoelectricity”. Int. J. Solids Struct., 50, 2781-2791.
    Hadjesfandiari, A.R. (2014), “Size-dependent Thermoelasticity”. Latin American J. Solids Struct., 11, 1679-1708.
    Hadjesfandiari A.R. and Dargush, G.F. (2011), “Couple stress theory for solids”, Int. J. Solids Struct., 48, 2496-2510.
    Hadjesfandiari A.R. and Dargush, G.F. (2013), “Fundamental solutions for isotropic size-dependent couple stress elasticity”, Int. J. Solids Struct., 50, 1253-1265.
    Janas D. and Koziol, K.K. (2014), “A review of production methods of carbon nanotubes and graphene thin films for electrothermal applications”, Nanoscale, 6, 3037-3045.
    Khajueenejad F. and Ghanbari, J. (2015), “Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model”, Mater. Res. Express, 2, 105009.
    Koiter, W.T. (1964), “Couple stresses in the theory of elasticity, I and II”, Proc. Ned. Akad. Wet. B, 67, 17-44.
    Kolahchi R. and Bidgoli, A.M.M. (2016), “Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes”, Appl. Math. Mech., 37, 265-274.
    Li, C., Thostenson, E.T. and Chou, T.W. (2008), “Sensors and actuators based on carbon nanotubes and their composites: a review”, Compos. Sci. Technol., 68, 1227-1249.
    Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), “Nanomechanics of single and multiwalled carbon nanotubes”, Phys. Rev., 69, 115429.
    Mensah, B., Kim, H.G., Lee, J.H., Arepalli, S. and Nah, C. (2015), “Carbon nanotube-reinforced elastomeric nanocomposites: a review”, Int. J. Smart Nano Mater., 6, 211-238.
    Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A. and Hoorzad, H. (2014), “Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories”, Physica E, 63, 223-228.
    Mindlin R.D. and Tiersten, H.F. (1962), “Effects of couple-stresses in linear elasticity”, Arch. Ration. Mech. Anal., 11, 415-488.
    Mori T. and Tanaka, K. (1973), “Average stress in matrix and average elastic energy of materials with misfitting inclusions”, Acta Metall. 21, 571-574.
    Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), “Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials”, Struct. Eng. Mech., 63, 161-169.
    Ng, K.W., Lam, W.H. and Pichiah, S., “A review on potential applications of carbon nanotubes in marine current turbines”, Renew. Sustain. Energy Rev., 28, 331-339.
    Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), “Dynamic instability analysis for S-FEM plates embedded in Pasternak elastic medium using the modified couple stress theory”, Steel Compos. Struct., 22(6), 1239-1259.
    Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018), “Free vibration of deep curved FG nano-beam based on modified couple stress theory”, Steel Compos. Struct., 26(5), .
    Reddy, J.N. (2001), “Microstructure-dependent couple stress theories of functionally graded beams”, J. Mech. Phys. Solids, 59, 2382-2399.
    Reddy, J.N. (2013), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton, 2013.
    Simsek M. and Reddy, J.N. (2013a), “Bending and vibration of functionally graded micrbeams using a new higher order beam theory and the modified couple stress theory”, Int. J. Eng. Sci., 64, 37-53.
    Simsek M. and J.N. Reddy, J.N. (2013b), “A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory”, Compos. Struct., 101, 47-58.
    Surana, K.S., Mysore, D. and Reddy, J.N. (2019), “Non-classical continuum theories for solid and fluent continua and some applications”, Int. J. Smart Nano Mater., 10, 28-89.
    Toupin, R.A. (1962), “Elastic materials with couple-stresses”, Arch. Ration. Mech. Anal., 11, 385-414.
    Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K. (2016), “Size-dependent behavior of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory”, Compos. Struct., 154, 556-572.
    Wang Q. and Arash, B. (2014), “A review on applications of carbon nanotubes and nano-resonator sensors”, Comput. Mater. Sci., 82, 350-360.
    Wu C.P. and Chen, Y.J. (2020), “A nonlocal continuum mechanics-based asymptotic theory for the buckling analysis of SWCNTs embedded in an elastic medium subjected to combined hydrostatic pressure and axial compression”, Mech. Mater., 148, 103514.
    Wu, C.P., Hong, Z.L. and Wang, Y.M. (2017), “Geometrically nonlinear static analysis of an embedded multiwalled carbon nanotube and van der Waals interaction”, J. Nanomech. Micromech. ASCE, 7, 04017012.
    Wu, C.P. and Hu, H.X. (2021), “A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories”, Acta Mech., accepted.
    Wu C.P. and Yu, J.J. (2019), “A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory”, Arch. Appl. Mech., 89, 1761-1792.
    Yang, F., Chong, A.C.M., Lam, D.C.C. and P. Tong (2002), “Couple stress based strain gradient theory for elasticity”, Int. J. Solids Struct., 39, 2731-2743.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE