| 研究生: |
陳柏廷 Chen, Po-Ting |
|---|---|
| 論文名稱: |
非稀土內藏型永磁電動機之後充磁設計與實現 Post-assembly Design and Realization of Non-rare Earth Interior Permanent Magnet Synchronous Motor |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 非稀土 、後充磁 、內藏型永磁電動機 、後充磁磁鐵模型 |
| 外文關鍵詞: | Non-rare earth magnet, post-assembly magnetization, interior permanent magnet synchronous machine (IPMSM), magnet model for post-assembly magnetization |
| 相關次數: | 點閱:82 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要將非稀土(Non-rare earth)磁鐵應用於永磁電動機之設計,並考量後充磁技術與其限制條件,以設計出材料成本低廉且來源穩定之非稀土電機。此處所謂非稀土材料即為鐵氧磁鐵(Ferrite)。
本文首先探討鐵氧磁鐵之材料特性。與稀土磁鐵最大不同在於,鐵氧磁鐵之剩餘磁通密度(Remanence)僅約為稀土磁鐵三分之一,因此必須採用聚磁式轉子以提高電動機性能,其轉子結構相對較複雜,造成組裝過程中困難度提高,故本文採用後充磁技術以減少組裝工序。聚磁式轉子應用後充磁法之磁鐵充磁方向與表面型轉子磁鐵後充磁不同,本文將透過磁鐵材料試驗分析其充磁方向特性,提出後充磁磁鐵模型,以供電動機後充磁性能設計參考。另外,於電動機設計方面,本文根據規格需求,結合磁路模型與後充磁條件,設計出一非稀土內藏型永磁電動機(IPMSM),再透過模擬與實驗驗證其正確性,並與前充磁做比較與分析。實驗結果符合理論設計,達成非稀土內藏型永磁電動機之後充磁設計與實現之目的。
This thesis is to apply non-rare earth magnet to permanent magnet electric machine design which considers the constraints of post-assembly magnetization. The non-rare earth magnet benefits from cost effective and stable source. The non-rare earth magnet here is Ferrite magnet.
This study first discusses the characteristics of Ferrite magnet. The difference between rare earth and non-rare earth magnet is that the remanence of ferrite magnet is weaker, with only about one third of rare earth. To improve performance, the electric machine is designed with a concentrated flux rotor. However, the complexity of the rotor structure causes difficulties for assembly work. Therefore, post-assembly magnetization proposed in this thesis is to simplify the assembly process. While applying post-assembly magnetization for concentrated flux rotor, magnetizing direction is different from surface permanent magnet rotors. This thesis investigates magnet properties through materials testing and proposes a magnet model for post-assembly magnetization. This can be provided for machine design with post-assembly magnetization. Based on specifications, this thesis combines magnetic circuit model and constraints of post-assembly magnetization to design a Ferrite magnet interior permanent magnet synchronous machine (IPMSM). Simulations and experiments are conducted to verify the design results. The experiment results agree well with the theoretical design. This confirm the design results of IPMSM through the proposed post-assembly magnetization method.
[1] G.W. Jewell and D. Howe,” Impulse Magnetization Strategies for an External Rotor Brushless DC Motor Equipped with a Multipole NdFeB Magnet,” IEE Colloquium on Permanent Magnet Machines and Drives, February 1993.
[2] P. Zheng, Y. Liu, Y. Wang and S.Cheng,“Magnetization Analysis of the Brushless DC Motor Used for Hybrid Electric Vehicle,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 522-524, January 2005.
[3] G.W. Jewell, D. Howe and T. S. Birch, “Simulation of Capacitor Discharge Magnetization,” IEEE Transactions on Magnetics, vol. 26, no. 5, pp. 1638-1640, September 1990.
[4] C.K. Lee, B.I. Kwon, B.-T. Kim, K.I. Woo and M.G. Han, “Analysis of Magnetization of Magnet in the Rotor of Line Start Permanent Magnet Motor,” IEEE Transactions on Magnetics, vol. 39, no.3, pp. 1499-1502, May 2003.
[5] M. F. Hsieh and Y. C. Hsu, “Characteristics Regulation for Manufacture of Permanent-Magnet Motors Using Post-Assembly Magnetization,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2510-2512, June 2007.
[6] H.S. Chen, David G. Dorrell, and Mi-Ching Tsai “Design and Operation of Interior Permanent-Magnet Motors With Two Axial Segments and High Rotor Saliency,” IEEE Transactions on Magnetics, vol. 46, no. 9, pp. 3664-3675, September 2010.
[7] M.F. Hsieh, Y.C. Hsu and David G. Dorrell “Design of Large Power Surface-Mounted Permanent-Magnet Motors Using Post-Assembly Magnetization,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 204-209, October 2010.
[8] P. Zheng, Y. Liu, Y. Wang and S. Cheng “Post-assembly Magnetization of Brushless DC Motor,” The 4th International Power Electronics and Motion Control Conference, 2004.
[9] D. G. Dorrell, M.-F. Hsieh, and Y.-C. Hsu, “Post Assembly Magnetization Patterns in Rare-Earth Permanent-Magnet Motors,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2489-2491, June 2007.
[10] M.F. Hsieh, Y.M. Lien, and David G. Dorrell, “Post-Assembly Magnetization of Rare-Earth Fractional-Slot Surface Permanent-Magnet Machines Using a Two-Shot Method,” IEEE Transactions on Industry Applications, vol. 47, no. 6, pp. 2478-2486, November/December 2011.
[11] 廖文博, "電容脈衝式充磁機參數計算"馬達電子報第487期, 2012。
[12] 徐佑銓,後充磁法應用於內藏式永磁無刷馬達之研究,國立成功大學系統及船舶機電工程學系碩士論文,2006。
[13] 廉堯閔,後充磁式永磁馬達之設計與實現,國立成功 大學系統及船舶機電工程學系碩士論文,2008年。
[14] 余守龍,永磁無刷啟動發電機之設計與實現,國立成功大學系統及船舶機電工程學系碩士論文,2009年。
[15] D. Hanselman, Brushless Permanent Magnet Motor Design, 2nded. New York:McGraw-Hill, 2003.
[16] 許裕昇、金書安、謝旻甫," 非稀土聚磁型永磁同步馬達磁路設 計", 機械月刊2013年4月號。
[17] M.-F. Hsieh, Y.-C. Hsu, David G. Dorrell and P.-T. Chen, “Evaluation of Permanent Magnet Generator Manufactured Using Postassembly Magnetization,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 4084-4087, July 2013.
[18] A. Wang, Y. Jia, and W. L. Soong, ”Comparison of Five Topologies for an Interior Permanent-Magnet Machine for a Hybrid Electric Vehicle,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3606-3609, October 2011.
[19] R. H. Staunton, S. C. Nelson, P. J. Otaduy, J. W. McKeever, J. M. Bailey, S. Das and R. L. Smith, ” PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application”, ORNL/TM-2004/217.