| 研究生: |
吳怡醇 Wu, Yi-Chun |
|---|---|
| 論文名稱: |
硼烷氨脫氫反應與再生路徑評估 Dehydrogenation study and regeneration assessment of ammonia borane |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 氫能 、硼烷氨 、回收 、硼酸 、硼烷氨放氫後產物 、化學儲氫 、水解反應 、熱解反應 |
| 外文關鍵詞: | Hydrogen energy, ammonia borane (NH3BH3), Regeneration, Boric acid ((B(OH)3, H3BO3), Spent ammonia borane, Hydrogen storage material, Hydrolysis, Thermal decomposition |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現階段發展的再生能源中,氫能源為一種極具潛力,值得深度發展的對象。因為與傳統化石燃料燃燒後所產生的廢氣相較,氫氣經燃料電池發電以後,所產生的產物為水,並不會對環境造成污染,同時也可以減緩現今溫室氣體所造成的全球暖化問題,並可以延續在石油之後,成為一項永續發展的能源。目前各國都積極在開發新式替代能源,其中氫能在開發過程中不斷的尋找降低成本的方式。在眾多儲氫方法中,化學儲氫被視為極具潛力的項目。當中,硼烷氨(NH3BH3)因為其19.6 wt%的高含氫量,在近年來更是逐漸受到矚目的化學儲氫材料。 在室溫下,NH3BH3是一個穩定的固體狀態,具有相對穩定及安全的特性,同時又擁有高理論能源儲存密度,只要配合適當觸媒與水進行反應或是利用高溫使其裂解,便可放出氫氣。但目前針對NH3BH3放氫後產物回收的資料跟文獻並不多,因此,回收NH3BH3的副產物、循環利用,以降低成本及污染,為具有前瞻性的重點研究。
在我們的研究中,我們希望建立NH3BH3的檢測技術及完成NH3BH3水解與加熱放氫後的產物鑑定,並針對實驗前後的NH3BH3,進行定性及定量分析。我們藉由傅立葉轉換紅外線光譜儀(FT-IR)、X-ray繞射分析儀(XRD)和核磁共振光譜儀(NMR) 完成NH3BH3的定性工作,而定量的部份,我們則是試著採用高效能液相層析儀(HPLC)、核磁共振光譜儀(NMR)、NH3BH3的放氫等方式進行。
此外,我們也經由XRD、FT-IR、NMR圖譜的比對去鑑定NH3BH3水解和熱列後的產物,發現NH3BH3水解過後之主要液體產物為硼酸,熱解後的產物則依溫度不同而有所差異。
最後,我們探討NH3BH3利用自行合成鈷與釕觸媒催化水解放氫的性能,並研究如何利用硼烷氨水解放氫後產物(硼酸)進行回收及對現有硼烷氨熱解回收技術做評估。
Stable and continuous supply of ultrapure hydrogen through controllable evolution from hydrolysis reaction of chemical hydrides, one kind of very promising hydrogen storage materials, has become more and more attractive recently, which has been shown as a promising and viable way to establishment of the hydrogen economy. Such chemical storage of hydrogen could give a much higher storage capacity of hydrogen. For example, ultrapure hydrogen can be released through hydrolysis of ammonia borane (NH3BH3). Among various chemicals used as hydrogen storage media, chemical hydrides such as ammonia borane have attracted the most attention lately, especially after the US DOE determined that sodium borohydride could reach previously set 2010 goal on hydrogen storage capacity at 6 wt% but fails to achieve that in 2015 at 9 wt%. The hydrogen storage capacity of ammonia borane is generally accepted as being able to reach above 9 wt% with its inherent hydrogen storage capacity as high as 19.6 wt%. More importantly, ammonia borane and its spent products after release of hydrogen via hydrolysis reaction are rarely toxic, stable and easily handled at ambient conditions. However, to feasibly realize the hydrogen economics associated with the usage of ammonia borane as hydrogen storage materials, it is necessary to bring down the cost of ammonia borane. Consequently, in this proposal, we aim to identify the possible products of spent ammonia borane and to assess possible regeneration technology on the spent ammonia borane for a further use as media in hydrogen storage in order to cut the operation cost of such chemical storage system of hydrogen.
In this project, we aim to establish the way to characterize the product before and after the reaction of ammonia borane by hydrolysis and thermal decomposition. With various equipments, such as FT-IR XRD NMR, we finish the work to characterize ammonia borane and the products of ammonia borane by hydrolysis and thermal decomposition. Furthermore, we have attempted to use the NMR, as well as the hydrogen release profiles from ammonia borane to determine and calibrate the amount of ammonia borane involved for hydrogen production. Therefore, we focus on the hydrolysis of ammonia borane in different ways and presence of different catalysts. Finally, we use the boric acid the product of hydrolysis to find out the possibly ammonia borane regeneration path and evaluate the regenerate technology of ammonia borane thermal decomposition.
Baitalowa F., Wolfa G., Grolier J.P.E., Dan F., Randzio S.L., “Thermal decomposition of ammonia–borane underpressures up to 600 bar.” Thermochimica Acta., 445, 121–125 (2006)
Basu S., Brockmana, Gagare P., Zheng Y., Ramachandran P. V., Delgass W.N., Gore J.P., “Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis.” J. Power Sources, 188, 238-243 (2009)
Baumann J., Baitalow F., Wolf G., “Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release.” Thermochimica Acta. 391, 159–168 (2002)
Bowden M., Autrey T., Brown I., Ryan M., “The thermal decomposition of ammonia borane: A potential hydrogen storage material.” Current Applied Physics, 8, 498–500 (2008)
Chandra M., Xu Q., “Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system.” J. Power Sources, 159, 855-860 (2006 )
Chandra M., Xu Q., “A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia–borane.” J. Power Sources, 156, 190-194 (2007 a)
Chandra M., Xu Q., “Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts.” J. Power Sources, 168, 135-142 (2007 b)
Davis B.L., Dixon D.A., Garner E.B., Gordon J.C., DOE Hydrogen Program, FY 2008 Annual Progress Report.
http://www.hydrogen.energy.gov/pdfs/progress08/iv_b_1f_ott.pdf
Davis B.L., Dixon D.A., Garner E.B., Gordon J.C., Matus M.H., Scott B., Stephens F.H., “Efficient Regeneration of Partially Spent Ammonia Borane Fuel.” Angew. Chem. Int. Ed. 48, 6812-6816 (2009)
Demirci U.B. and Miele P., “Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications.” Energ. Environ. Sci., 2, 627-637 (2009)
Diakov1 V., Shafirovich E., Varma A., “Noncatalytic hydrothermolysis of ammonia borane.” Int. J. Hydrogen Energy, 33, 1135-1141 (2008)
Hausdorf S., Baitalow F., Wolf G., Mertens O.R.L., “A procedure for the regeneration of ammonia borane from BNH-waste products.” Int. J. Hydrogen Energy, 33, 608-614 (2008)
Hamilton C.W., Baker R.T., Staubitz S., Manners I., “B–N compounds for chemical hydrogen storage.” Chem. Soc. Rev., 38, 279–293 (2009)
Helary J., Salandre N., Saillard J., Poullain D., Beaucamp A., Autissier D.“A physico-chemical study of an NH3BH3-based reactive composition for hydrogen generation.” Int. J. Hydrogen Energy, 34, 169-173 (2009)
Kim D.P., Moon K.T., Kho J.G., Economy J., Gervais C., and F. Babonneau., “Synthesis and characterization of poly(aminoborane) as a new boron nitride precursor.” Polym. Adv., 10, 702-712 (1999)
Material Matters, Hydrogen storage Materials, http://www.sigmaaldrich.com/materials-science/learning-center/technical-literature.html
Matus M.H., Anderson K.D., Camaioni D.M., Autrey S.T., and Dixon D.A., “Reliable Predictions of the Thermochemistry of Boron-Nitrogen Hydrogen Storage Compounds: BxNxHy, x = 2, 3.” J. Phys. Chem. A, 111, 4411-4421 (2007)
Mohajeri N., T-Raissi A., Adebiyi O., “Hydrolytic cleavage of ammonia-borane complex for hydrogen production.” J. Power Sources, 167, 482–485 (2007)
Peng B., Chen J., “Ammonia borane as an efficient and lightweight hydrogen storage medium.” Energy Environ. Sci., 1, 479–483 (2008)
Ramachandran P. V., Gagare P.D., “Preparation of Ammonia Borane in High Yield and Purity, Methanolysis.” Inorg. Chem. 46, 78107817 (2007)
Simagina V.I., Storozhenko P.A., Netskina O.V., Komova O.V., Odegova G.V., Larichev Y.V., Ishchenko A.V., Ozerova A.M.“Development of catalysts for hydrogen generation from hydride compounds.” Catalysis Today, 138, 253-259 (2009)
Stephens F.H., Pons V., Baker R.T., “Ammonia–borane: the hydrogen source par excellence?.” Dalton Trans., 2613–2626 (2007)
Umegaki T., Yan J.M., Zhang X.B., Shioyama H., Kuriyama N., Xu Q., “Hollow Ni–SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.” J. Power Sources, 191, 209-216 (2009)
Wang P. and Kang X.D., “Hydrogen-rich boron-containing materials for hydrogen storage.” Dalton Trans., 5400–5413 (2008)
Wolf G., Baumann J., Baitalowa F., Hoffmann F.P., “Calorimetric process monitoring of thermal decomposition of B±N±H compounds.” Thermochimica Acta., 343, 19-25 (2000)
Xu Q., Chandra M., “Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature.” J. Power Sources, 163, 364-370 (2006)
Xu Q., Chandra M., “A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane.” Journal of Alloys and Compounds, 446–447, 729–732 (2007)
Xu Q., Chandra M., “Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts.” J. Power Sources, 168, 135–142 (2007)
Yao C.F., Zhuang L., Cao Y.L., Ai X.P., Yang H.X. “Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts.” Int. J. Hydrogen Energy, 33, 2462 – 2467 (2008)
趙文衡、黃慧文,「綠色能源產業的商機與挑戰」震旦月刊,第458期,2009年9月,頁8-11。
行政院環境保護署,「空氣污染物檢測方法建立與驗證-空氣中氨及氯標準檢驗方法之驗證」, EPA-85-3305-09-02,中華民國85年6月。